Parameter Estimation

Equation (17.6) is useful for parameter estimation. Let the mean ${\bf y}$ depend on a set of mean parameters $\phi_1, \phi_2 \ldots$, and let the spectrum values $\rho_0, \rho_1 \ldots \rho_{N/2+1}$ depend on spectral parameters $\theta_1, \theta_2 \ldots$. Let the first derivatives of $\log p({\bf x})$ be denoted by

$\displaystyle D(\theta) = \frac{\partial}{\partial \theta} \log p({\bf x}; \theta).$

We have

$\displaystyle D(\theta) \stackrel{\mbox{\tiny$\Delta$}}{=}\frac{\partial}{\part...
...sum_{k=0}^{N-1} \;
\left( \frac{\partial \rho_k}{\partial \theta}\right)
T_1(k)$ (17.7)

$\displaystyle D(\phi) \stackrel{\mbox{\tiny$\Delta$}}{=}\frac{\partial}{\partia...
...\rm Re}\left\{
\left(\frac{\partial Y_k}{\partial \phi}\right) T_2(k)
\right\},$ (17.8)

where $E_k = X_k-Y_k$, and $T_1(k)$, $T_2(k)$ are defined implicitly.

Using (17.7), the Fisher's information between spectral parameters $\theta_1$ and $\theta_2$ equals

$\displaystyle I(\theta_1,\theta_2) = -{\cal E} \left\{
\frac{\partial^2 }{\par...
...1} \; \left( \frac{\partial \rho_k}{\partial \theta_1}\right)
T_1(k) \right\}
$

Before carrying out the derivative with respect to $\theta_2$, notice that $T_1(i)$ is zero in expected value. Therefore, the only terms remaining are associated with the derivative of $T_1(i)$. Note that

$\displaystyle {\cal E} \left\{
\frac{\partial }{ \partial \theta_2} T_1(k)
\r...
...
= \frac{1}{\rho_k^2} \left( \frac{\partial \rho_k}{\partial \theta_2}\right)
$

Therefore,

$\displaystyle I(\theta_1,\theta_2) = \frac{1}{2}
\sum_{k=0}^{N-1} \; \left( \fr...
...ght)
\frac{1}{\rho_k^2} \left( \frac{\partial \rho_k}{\partial \theta_2}\right)$ (17.9)

Using (17.8), for “mean" parametrs,

$\displaystyle I(\phi_1,\phi_2) = -{\cal E} \left\{
\frac{\partial^2 }{\partial...
...
\left( \frac{\partial Y_k}{\partial \phi_1}\right)
T_2(k) \right\} \right\}
$

Before carrying out the derivative with respect to $\phi_2$, notice that $T_2(k)$ is zero in expected value. Therefore, the only terms remaining are associated with the derivative of $T_2(k)$. Note that

$\displaystyle {\cal E} \left\{
\frac{\partial }{ \partial \phi_2} T_2(k)
\rig...
...k}{N\rho_k}
= - \frac{1}{N\rho_k} \frac{\partial \bar{Y}_k}{ \partial \phi_2}
$

Therefore,

$\displaystyle I(\phi_1,\phi_2) =
\sum_{k=0}^{N-1} \; {\rm Re} \left\{
\left( \f...
...ac{1}{N\rho_k} \left( \frac{\partial \bar{Y}_k}{\partial \phi_2}\right)\right\}$ (17.10)