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Abstract—The projected belief network (PBN) is a layered
generative network with tractable likelihood function, and is
based on a feed-forward neural network (FF-NN). It can therefore
share an embodiment with a discriminative classifier. In this
paper, a PBN is constructed with special output prior that
serves as a discriminative cost function. The result is a single
network that both fully discriminative and fully generative.
Training is possible with varying degrees of generative and
discriminative influence. A convolutional PBN classifier is tested
on spectrograms of spoken commands. It is shown that the
network displays excellent qualities from either the discriminative
or generative viewpoint. Excellent random data synthesis and
visible data reconstruction from hidden variables deep within
the network is shown, while classifier performance approaches
that of a regularized discriminative network.

I. INTRODUCTION

A. Background and Motivation

Much has been published on the comparison of generative

and discriminative classifiers. The widespread view is that

discriminative classifiers generalize better when sufficient la-

beled training data is available [1]. Despite their success, it

has been recognized that discriminative methods have flaws,

vividly demonstrated by adversarial sampling [2], a technique

in which small, almost imperceptible changes to the input

data cause false classifications. Because generative classifiers

are based on a model of the underlying data distribution,

they are immune to adversarial sampling and can comple-

ment discriminative classifiers. As a result, there are a large

number of methods that seek to combine generative and

discriminative classifiers [3], [4], [5], [6], [7], [8], [1], or

to combine discriminative and generative training [1], [9],

[10] The weakness of generative classifiers stems from the

need to estimate the data distribution, a very difficult task

that is unecessary when just classifying between known data

classes [11]. Deep layered generative networks are a step

in the right direction because they can model complex data

generation processes, but they have a serious flaw: the data

distribution, also called likelihood function (LF) is intractible

because the hidden variables are jointly distributed with the

input data and must be integrated out. Such networks need to

be trained using surrogate cost functions such as contrastive

divergence to train restricted Boltzmann machines [12], [13],

and Kullback Leibler divergence to train variational auto-

encoder (VAE) [14], or an adversarial discriminative network

to train generative adversarial networks (GAN) [15].

In summary, there is a need for better generative models

with tractable LF that can be combined with discriminative

approaches. The newly introduced layered generative network

called projected belief network (PBN) stands out as a poten-

tially better choice to achieve these goals. The PBN is a deep

layered generative network (DLGN), so can model complex

generative processes, but differs from all other DLGNs in three

ways. First, it has a tractable likelihood function, so can be

trained directly. Using the tractable LF, it can detect out-of-

set samples (outliers that are outside of the set of training

classes). Second, the PBN is based on a feed-forward neural

network (FF-NN), so it can share an embodiment with a

discriminative classifier (i.e. it is a single network that is both

a complete generative model and a discriminative classifier).

Third, the discribution of the output layer (output variables of

the last layer) is embedded as a separate factor in the likelihood

function, so can be used to inject discriminative behavior into

the network without compromising the generative model. For

these three reason, the PBN is a more direct way to introduce

the advantages of generative models into a discriminative

classifier, or vice-versa.

B. Main Idea

The goal of this paper is to construct a layered generative

network with tractable likelihood function that is at the same

time a fully discriminative classifier. As we stated, the PBN

is based on a feed-forward neural network (FF-NN). Figure 1

shows a simple 3-layer feed-forward neural network (FF-NN).

Each layer l consists of a linear transformation (represented by
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Fig. 1. A feed-forward neural network (FF-NN). This FF-NN can be a
discriminative classifier if λ4 is the softmax function and the output box is
the cross-entropy cost function. It can also be a generative model if viewed
as PBN and the output box is the output prior distribution g(x4).

matrix Wl), a bias bl and an activation function λl+1( ). The

linear transformation can be fully-connected or convolutional,

but must have total output dimension lower than the input di-

mension. The output layer is required to have a total dimension



equal to the number of classes. Therefore, if the final activation

function were softmax, then this network could be trained as a

traditional classifier using cross-entropy cost function. On the

other hand, it can also be viewed as a projected belief network

(PBN) [16], [17]. As such, it has the likelihood function (see

[17]) given by

pp(x1;T, g) =
1
ǫ
p(x1;H0,1)
p(z1;H0,1)

|Jz1x2
| ·

p(x2;H0,2)
p(z2;H0,2)

|Jz2x3
|
p(x3;H0,3)
p(z3;H0,3)

|Jz3x4
| g(x4),

(1)

where ǫ is the sampling efficiency [17] that we can assume

to be 1.0, p(xl;H0,l) is the assumed prior distribution for the

input to layer l, denoted by xl, p(zl;H0,l) is the distribution

of zl under the assumption that xl is distributed according

to p(xl;H0,l), and where g(xL+1) is the assumed prior for

the output of a network. The PBN is trained by maximizing

the mean of the log of (1) using stochastic gradient ascent.

To be a PBN, however, the network must have decreasing

dimension in each layer. In the following, we will describe

how to create a prior g(xL+1) so that the same network can

be viewed as a discriminative classifier and as a generative

PBN. In other words, the prior g(xL+1) will assume the

role of the cross-entropy cost function, so will result in a

generative/discriminative network.

II. TECHNICAL APPROACH

A. Output Non-Linearity and Prior

In order to create a PBN that is compatible with a discrimi-

native classifier, we used the truncated exponential distribution

(TED) activation function (non-linearity) [17], [19] given by

λ(α) = eα

eα−1 − 1
α

, which is similar to sigmoid, producing

output in [0, 1]. We used a TED prior output distribution

g(xL+1) given by g(x;α) =
∏

i

(

αi

eαi−1

)

eαixi , where

α depends on the class labels (the ground-truth label for

input data x1). The relationship is αi = 2C(li − .5), where

[l1, l2 . . . lM ] are the one-hot label encodings, so αi has values

C or −C.. Recall the output dimension M is also the number

of classes. An approximation to this prior for large C is to

add a value of log(C) to the LF when output xi matches li,

and a value of log(C) − C if it is the logical inverse of li.

Training the network to maximize the average of the log of (1)

can be interpreted as discriminative (through term g(xL+1))
and generative through the remaining terms. The degree of

discriminative training can be varied by changing C.

B. MaxEnt Reconstruction and Synthesis

We now investigate a distinctly generative property of the

PBN : visible data reconstruction from hidden variables. Input

data can be randomly synthesized or reconstructed from the

output of any layer of the FF-NN.

Unlike other generative networks, the PBN is not an ex-

plicit generative network, it operates implicitly by “backing

up” through a FF-NN. In each layer, the FF-NN operates

on the input x by dimension-reducing linear transformation

z = W
′
x. To “back up”, it is necessary to determine the set

M(z) of possible input samples x that “could have” produced

z. In other words,

M(z) = {x : W′
z = x}.

A sample is selected from M(z) with probability density

proportional to the prior distribution p0(x). This is called

“MaxEnt” sampling because p0(x) is the maximum entropy

prior given the range of x. It is also called uniform manifold

sampling (UMS) because under certain conditions, p0(x)
has constant value on M(z). Sampling requires a type of

Markov chain Monte-Carlo (MCMC) [19]. For deterministic

reconstruction, we select x to be the centroid of M(z), which

is also the conditional mean x̂|z = E(x|z).
This conditional mean can be found in closed form for a

range of MaxEnt priors [18], [17], [19]. It is given by x̂|z =

λ
(

Wĥ

)

, where ĥ is the solution of the equation

W
′λ (Wh) = z. (2)

This solution is guaranteed to exist as long as x is in the

support p0(x) and is also the saddle-point for the saddle-point

approximation to p0(z) [18]. For the simplest case of Gaussian

MaxEnt prior, the activation function is linear, λ(α) = α, and

the reconstruction is just least-squares, x̂|z = W (W′
W)

−1
z.

For positive-valued data, we use the truncated Gaussian prior

[18], and for data in [0, 1], we use the uniform prior [18].

Starting at any layer output, one can proceed in the back-

ward direction up the network, always increasing the dimen-

sion, until the visible data is reconstructed. Note that ĥ is only

guaranteed to exist if z = W
′
x for some x in the support

p0(x). But, when reconstructing from more than one layer,

this requirement is not always met, so the reconstruction chain

could fail (see sampling efficiency in [17]). However, after the

network is trained, reconstruction failure is rare [17], and often

means the input sample is mal-formed.

Note that there are two possible methods to reconstruct x

from z, (a) random sampling in M(z) by MCMC , and (b)

deterministically selecting the centroid x̂|z. In the following,

we use the approach of random sampling the last 2 layers,

then deterministic reconstruction back to the visible data.

C. PBN Properties

The proposed method differs significantly with other meth-

ods of combining the roles of generative and discriminative

networks that are available in the field because the discrim-

inative influence is added into the output prior and does not

disturb the “purity” of the generative network. In other words,

there is no compromise between generative and discriminative

training or structure, they are both contained in one network

and one cost function!

When reconstructing visible data from hidden variables, the

synthesized data, when applied to the feed-forward network,

produces exactly the same hidden variables. This property of

hidden variable recovery is interesting and is true of no other

layered generative network.



When the discriminative cost function is “satisfied” (the

training data is almost completely separated), then the genera-

tive cost dominates, so the network becomes the best possible

PBN that at the same tiome separates the data. This can be

seen as a generative regularization effect.

III. CLASSIFICATION OF SPECTROGRAMS OF WORDS

COMMANDS

A. Data set

The data was selected to be at the same time relevant,

realistic, and challenging. We selected a subset of the Google

speech commands data [20], choosing three pairs of difficult

to distinguish words: “three, tree”, “no, go”, and “bird, bed”,

sampled at 16 kHz and segmented into into 48 ms Hanning-

weighted windows shifted by 16 ms. We used log-MEL band

energy features with 20 MEL-spaced frequency bands and 45

time steps, representing a frequency span of 8 kHz and a

time span of 0.72 seconds. The input dimension was therefore

N = 45×20 = 900. From each of the six classes, we selected

500 training samples, 150 validation samples, at random. The

remaining samples were used to test, averaging about 1500

per class or about a total of 10000 testing samples.

B. Network

A separate network was trained on each word pair. The net-

works had L = 5 layers. The first layer was convolutional with

36 21 × 16 convolutional kernels using “valid” border mode

and 6×4 downsampling (not pooled, just down-sampled), thus

producing 36 5× 2 output feature maps, or a total output di-

mension of 360. The remaining 3 layers were fully-connected

with 100, 32, and 16 hidden neurons. The output layer had 2

neurons, matching the number of classes. Note that we sought

to reduce the dimension in each layer by at least a factor of 2.

The layer output activation functions were linear, TG, TG, TG,

and softmax, where TG is the truncated Gaussian activation

[18] (similar to softplus) : λTG(α) = α + N (α)
Φ(α) , where

N (x)
∆

= e−x2/2
√
2π

and Φ(x)
∆

=
∫ x

−∞ N (x) . The TG activation

is the theoretical activation function for reconstructing data

from a linear transformation applied to positive-valued data

under the truncated Gaussian prior distribution [18], however

in behavior, it is similar to softplus λSP (α) =
1

1+e−x .

C. Classification Results

The networks were first initialized with random weights

and trained as a standard discriminative deep neural network

(DNN) with dropout regularization of 0.2, 0.1, and 0.1 applied

to the output of the first through third layers (dimensions 360,

and 100, 36, respectively) and L-2 regularization. No data aug-

mentation (such as random shifting) was used. Classification

accuracy for the DNN is given in Table I.

Next, the DNNs trained as described above were used as the

initial network for the PBN, which was trained by maximizing

the mean likelihood function (1) with output prior distribution

parameter C = 2000. No data augmentation was used, and no

regularization was used.

”three-tree” ”no-go” ”bird-bed”

train test train test train test

DNN 1.00 0.870 1.00 0.874 1.00 0.960

PBN .991 0.881 0.992 0.810 0.978 0.946

TABLE I
CLASSIFICATION ACCURACY FOR THE THRE CLASS PAIRS.

The classification results for the PBN on the three class

pairs are shown in Table I where they can be compared with

the DNN. Note that the PBN has only slightly lower accuracy

than the DNN, and in fact has higher accuracy on one class

pair. It should also be kept in mind that the PBN was trained

without regularization of any kind, wheras the DNN used both

L2 and dropout regularization.

D. Reconstruction Results

It has been established that the PBN has lost little in terms

of classification performance. It will now be determined what

has been gained in terms of generative power. The first thing

that comes to mind is the reconstruction of visible data from

the hidden variables. Using the method of Section II-B, we

reconstructed data from the DNN’s hidden variables, starting

with 1 layer, then 2 layers, etc. Results are shown in Figure 2.

After the first layer, some resemblance can be seen, but after

Fig. 2. Samples of spoken word commands “three” and “tree” reconstructed
from standard DNN hidden variables. From top: original spectrograms, then
the same reconsructed from first through third layer. Reconstruction from
layers 4 and 5 was not possible due to sampling efficieny of zero.

that, the images are unrecognizeable. This is how the network

sees the data through the hidden variables. The noisy images,

when used as input data will produce exactly the same hidden

variables at the given layer as the original input sample.

The reconstruction experiment was repeated for the trained

PBN. Results are shown in Figure 3. Reconstructing from the

output of the layers produces reconstructions with excellent

quality, but gradually decreasing sharpness. Reconstruction

from the fifth layer (a feature bottleneck of dimension 2)

produces either a “standard” “three” or a “standard” “tree”.

Note that this network was not trained for lower reconstruction

error, but instead to maximize (1). The reconstruction power

of the network comes as a side-effect and can be tapped into

anywhere in the network. A standard auto-encoder, in contrast,

is trained to reconstruct for a fixed network length.



Fig. 3. Samples of speech commands “three, three” reconstructed using PBN.
From top: original spctrograms, then the same reconsructed from output of
first through fifth layer. Hidden variable dimensions are 360, 100, 32, 16, and
2.

E. Classifying between class pairs

A second exercise in “generative capability” is the classifi-

cation between class pairs using models trained separately on

just one pair. This exercise is obviously not possible using the

discriminative classifiers trained on the class pairs, but must be

trained on all six classes. For the PBN, discrimination between

members of the class pairs occurs in the output layer and does

not require computing the LF because these are independent

terms in (1). To compute the LF for just one member class, it

is necessary to set the parameter α of the output distribution

to the respective one-hot encoding. The results of the 6-class

PBN experiment are shown in Figure 4. The probability output

of the PBN classifier is shown on the left side. Notice that there

are a significant number of errors between class pairs. Total

classification error was 21 percent.

A discriminative DNN was trained on the 6-classes using

the same network structure as the two-class networks, but

with increased neuron counts of 48, 150, 48, 24, and 6 using

dropout and L2 regularization. The classification performance

of the DNN was 12.9 percent, significantly lower than the

multiple PBN classifier. It is easy to explain why the PBN

performed almost as well in the class-pairs, but much worse

in the 6-class experiment. This is because the class-pair PBN is

a single model, whereas for the 6-class problem, three separate

generative models are required. This introduces errors resulting

from imbalances in the models. Here is an opportunity, how-

ever, to improve the result by mixing the two classifier outputs.

On the right side of Figure 4, we show the classification error

percentage as a function of the mixing constant, showing the

transition from PBN only (left) to DNN only (right). At a

certain value, there is a dip in error, providing the optimal

mixing value. As has been shown [19], a hybrid generative

model can be created at this “optimal” point.
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Fig. 4. Left: PBN output probabilities for the six classes. Right: Classification
error in percent as a function of mixing constant for a mixture of PBN with
DNN.

F. Random Synthesis

As a final demonstration of generative power, we synthe-

sized entirely random events by starting with random data

equal in dimension to the PBN output layer, in this case

dimension-2. Data was synthesized at the point prior to the

output activation function using Gaussian random variables.

Results are shown in Figure 5 for the class pair “three” and

“tree”. The synthetic samples appear realistic and are diverse,

Fig. 5. Top: ten training samples randomly selected from “three” and “tree”
spoken word commands. Bottom: randomly synthesized data from trained
PBN. There is no relationship to the selected training samples on top.

showing variations in time shift, dilation, and other qualities.

This means that the PBN has indeed learned much about the

data generation process.

G. Implementation and Applications

The PBN was implemented in Python using Theano sym-

bolic expression compiler [21]. The primary computational

challenge is the solution of a symmetric linear system with

dimension M ×M , where M is the total output dimension of

a layer. This must be solved for each iteration in the solution

of (2). This was parallelized on the GPU, one processor for

sample in a mini-batch. The computational time for an epoch

was 1.1 seconds. This was only about an order of magnitude



slower than training the DNN. All results were obtained using

PBN Toolkit 1.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a projected belief network (PBN), which is a

purely generative layered network, was trained as a generative-

discriminative classifier. This was achieved using a label-

dependent prior for the output features. Since the PBN is based

on a feed-forward neural network (FF-NN), it can share an em-

bodiment with a discriminative deep neural network (DNN).

Using a single parameter, the network can be trained either as

a generative PBN, or as a discriminative DNN, or any point

in between. When reconstructing visible data from the hidden

variables, it was shown that the DNN had very poor ability

to reconstruct, even from initial layers, whereas when training

jointly with the PBN, the reconstruction greatly improved. The

PBN classifier had comparable classification performance to

the discriminative DNN despite using no regularization, yet

provided generative power from three standpoints: visible data

reconstruction from hidden variables, random data synthesis,

and classification of out-of set samples.

The results in this paper open up several questions for future

work. For example, the PBN appears not to respond well

to dropout or L2 regularization, but the unregularized PBN

classifier performed on par with the regularized DNN. Is there

a way to regularize the PBN to achieve further improvements?

How can the strucure of the PBN be improved, for example

with longer or shorter networks? Can the PBN be used in

adversarial networks? Are there other, better prior distributions

to use? Are there better methods to initialize the PBN? How

does classification through reconstruction error compare to LF

classification?
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