
1

Discriminative Alignment of Projected Belief

Networks
Paul M. Baggenstoss Fraunhofer FKIE, Fraunhoferstrasse 20

53343 Wachtberg, Germany

Email: p.m.baggenstoss@ieee.org

Abstract—The projected belief network (PBN) is a deep layered
generative network with tractable likelihood function (LF) and
can be used as a Bayesian classifier by training a separate model
on each data class, and classifying based on maximum likelihood
(ML). Unlike other generative models with tractable LF, the PBN
can share an embodiment with a feed-forward classifier network.
By training a PBN with a cost function that combines LF with
classifier cross-entropy, its network weights can be “aligned” to
the decision boundaries separating the data class from other
classes. This results in a Bayesian classifier that rivals state of
the art discriminative classifiers. These claims are backed up
by classification experiments involving spectrograms of spoken
keywords and handwritten characters.

I. INTRODUCTION

A. Motivation

A Bayesian classifier works by comparing the likelihood

function (LF) of generative models (probability density es-

timators) trained individually on each data class. Generative

classifiers are desirable because they posses a model of the

data generation process, can generate synthetic data, and are

robustness against outliers and adversarial attacks[1], but they

generalize poorly compared to discriminative classifiers when

sufficient labeled training data is available [2]. Reasons include

model mismatch, differences in initialization and training of

the various class models, and the difficulty of estimating high-

dimensional probability distributions [3]. We therefore seek a

method that exhibits the best qualities of both generative and

discriminative classifiers.

B. Background and Proposed Approach

There have been many methods that seek to combine

generative and discriminative classifiers [4], [5], [6], [7], [8],

[9], [2], or to combine discriminative and generative training

[2], [10], [11]. But, to truly combine both paradigms, one

should seek a single model that is simultaneously generative

and discriminative. Stacked restricted Boltzmann machines

(RBMs) and auto-encoders, can be seen both as generative

networks and as feed-forward networks, and therefore can

co-exist with discriminative networks. In fact, these have

been used as a pre-training approach for deep discriminative

classifiers [12], [13], [14]. However, the LF of these gener-

ative networks intractable because the visible data is jointly

distributed with the latent variables, which must be integrated

This work was supported by Office of Naval Research Global under
Research Grant - N62909-21-1-2024

out [15]. In a PBN, the latent variables are deterministically

determined from the visible data, the integration to find the

marginal is carried out on a manifold, resulting in a closed-

form LF [16], [17]. Although the PBN LF is evaluated using

the saddle point approximation (SPA), the error is for all

practical purposes negligible, as we demonstrate in Section

II-F. Having a tractable LF, the PBN can be trained and used

as a true Bayesian classifier. And, being based on a feed

forward network, the possibility exists to simultaneously train

the network as a classifier.

Previous work on PBNs includes:

• Theoretical introductions [18], [19].

• Applications of PBN as a straight generative Bayesian

classifier [18], [20], where a separate PBN is trained on

each data class, either as a likelihood function, or as a

type of auto-encoder based on reconstruction error.

• As as a regularizer for a discriminative classifier [21]. In

this this approach, a single network is trained with a com-

bined cost function: standard discriminative cross-entropy

cost, and generative log-likelihood cost. The generative

cost-function component acts as a regularization.

In the last item above, a discriminative classifier was trained

by adding a generative component to the cost function. In

contrast, this paper proposes to take a Bayesian classifier based

on the PBN and add a discriminative component to the cost

function. While training each class-dependent PBN model, a

discriminative cost function is used to make the model more

“sensitive” to other classes, effectively “aligning” the high-

dimensional likelihood function to the decision boundaries.

The result is a significantly improved generative classifier.

C. Paper Organization

In Section II, the mathematical background is presented

including a review of PDF projection (Section II-A), the

concept of discriminative alignment (Section II-B), a discus-

sion of maximum entropy (MaxEnt) priors (Section II-C), the

extension of PDF projection to multi-stage transformations

(Section II-D), and its application to neural networks, called

projected belief network (PBN) (Section II-E). In Section II-F,

we discuss the saddle point approximation, which is used to

calculate the likelihood function (LF) of the PBN. In Section

III, the concepts are applied to a real data scenario consisting

of spoken word commands. Finally, in the supplemental results

(Section VII), results using a second data set consisting of

2

handwritten characters are presented. Comments on computa-

tional loading are given in Section III-F and conclusions are

presented in Section VI.

II. MATHEMATICAL RESULTS

A. Review of PDF Projection and PBN

The PBN is an application of probability density function

(PDF) projection [22], [16], [17], [23]. Consider an arbi-

trary differentiable dimension-reducing transformation z =
T (x), mapping a N -dimensional input vector x to the M -

dimensional output vector z, where M < N . Let X ∈ R
N be

the input range, and Z ∈ R
M be the output range. Let g(z)

be any distribution with support on Z. Consider the function

G(x) =
p0(x)

p0(z)
g(z), (1)

where p0(x) is some reference distribution (reference hypoth-

esis) with support on X, and p0(z) is the mapping of p0(x)
with support on Z. The PDF projection theorem [22] states

that G(x) is a distribution on X (it integrates to 1), and maps

through T (x) to g(z). The distribution G(x) is said to be

the “projection” of g(z) back to the input space. In fact, any

distribution on X that maps to g(z) is of the form (1) [16].

A unique projected PDF G(x) arises if we restrict ourselves

to reference distributions of maximum entropy [16]. In this

paper, we do not consider discrete distributions because the

calculation of p0(z) is intractable.

B. Discriminative Alignment

In Figure 1, an example projected distribution is shown. In

this example, we used a linear transformation z = W
′
x and

p0(x) was the uniform reference hypothesis for data values in

the range xi ∈ [0, 1], ∀i. The figure shows an intensity image

and contour plot of the probability distribution G(x). Since

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 1. Visualization of the implied (projected) PDF for a perceptron layer,
reprinted from [18].

G(x) is based on matrix W, the contour lines are “aligned”

with the linear column space of matrix W. However, there is

much freedom in the choice of these column spaces - there

may be many alternative representations to get an equally good

G(x). In a discriminative classifier, however, these column

spaces must be aligned with classification decision boundaries.

Therefore, by training W for both purposes, to estimate G(x)
and to discriminate, it may be possible to achieve a G(x) that

is aligned to the decision boundaries, yet at the same time

achieves a good representation of G(x).

X a, b MaxEnt Prior pe(x; a, b) λ(a)

R
N 0,− 1

2
φ(x, 0, σ2) (Gaussian) σ2a (Linear)

P
N 0,− 1

2
2φ(x, 0, σ2) (TG) σ2a+ σ

φ(σa;0,1)
Φ(σa)

(TG)

U
N 0,0

(

α
eα−1

)

eαh (TED) ea

ea−1
−

1
a

(TED)

TABLE I
MAXENT PRIORS AND ACTIVATION FUNCTIONS BY INPUT DATA RANGE.

TG=“TRUNC. GAUSS.”. TED=“TRUNC. EXPON. DISTR”. NOTATION:

φ(x; a, σ2) = (2πσ2)−1/2 e−(x−a)2/(2σ2), Φ (x)
∆
=

∫ x
−∞

φ (x, 0, 1) .
THE TED DISTRIBUTION SIMPLIFIES TO THE UNIFORM DISTRIBUTION FOR

a = 0, b = 0.

C. MaxEnt Priors

Implementation of (1) requires a reference distribution

p0(x), which can be seen as a Bayesian prior [16]. Having

no information about the distribution of x aside from the data

range, and perhaps variance (for normalized data), one appeals

to the principle of maximum entropy (MaxEnt) to choose

prior [24], [23], [25]. These MaxEnt distributions tend to be

canonical distributions, which also simplifies the calculation

of p0(z). In this paper, we consider three continuous-valued

data ranges that cover most useful applications:

1) The unconstrained case,

X = R
N = {x : xi ∈ [−∞,∞] ∀i},

2) The positive quadrant,

X = P
N = {x : xi ∈ [0,∞] ∀i},

3) The unit hyper-cube,

X = U
N = {x : xi ∈ [0, 1] ∀i}.

MaxEnt distributions are generally of the exponential class

[26]. For the above data ranges, we need the class of distribu-

tions given by

p(x|H0) = pe(x;a, b) =
N
∏

i=1

pe(xi; ai, b), (2)

where
pe(x; a, b) =

1

K(a, b)
eax+bx2

. (3)

Since the entropy of a distribution increases with variance,

entropy can grow without bounds in the ranges R
N and P

N

unless some other constraints are imposed. We can impose

necessary constraints through the parameters a, b in (3). A

table of MaxEnt distributions and the selected values of a, b

are given in Table I. In addition to the MaxEnt prior, the

table shows the associated “activation function” λ(a), which

computes the expected value as a function of the parameter a.

D. Multi-Layer Networks

Implementing equation (1) requires a tractable expression

for the output distribution p0(z), but this becomes intractable

for complex transformations such as multi-layer networks. In

these cases, equation (1) can be applied recursively one layer

at a time and by assuming a separate MaxEnt prior for the

input of each stage. To start, we assume that z = T (x) is just

the first layer transformation. Then, g(z) is itself written as a

projected PDF based on the transformation of z occurring in

the second layer. This recursion, called the chain-rule, repeats

for an arbitrary numbers of layers ([22], page 676, Section

3

II.D). Consider a 3-layer network. Let xk−1 be the input of

layer k, xk = Tk(xk−1) the output of layer k, and x = x0 is

the network input. For a 3-layer network, and the network

output distribution is assumed to be g(x3), the chain rule

would be written

G(x, g, T1, T2, T3) =
p(x;H0

0)

p(x1;H0
0)

p(x1;H
1
0)

p(x2;H1
0)

p(x2;H
2
0)

p(x3;H2
0)

g(x3),

(4)

where Hk−1

0 is the MaxEnt prior distribution for layer k input.

E. Projected Belief Network

Applying (4) to a multi-layer perceptron network results in

a projected belief network (PBN) [18], [19], [20], [21]. The

LF of the PBN, given by (4), can be trained by gradient ascent.

Each layer of a PBN consists of a dimension-reducing linear

transformation (dense or convolutional), followed by a bias

and non-linear activation function. The contribution of layer k

to the overall LF (4) is given by

p(xk;H
k
0)

p(xk+1;Hk
0)

=
p(xk;H

k
0)

p(zk;Hk
0)

|Jk|, (5)

where zk is the output of the linear transformation of layer

k, so zk = W
′

kxk, and |Jk| is the absolute value of the

determinant of the Jacobian matrix for the invertable activation

function, |Jk| =
∏M

i=1

∣

∣

∣

∂xk+1,i

∂zk,i

∣

∣

∣
, where M is the dimension

of zk. The term p(xk;H
k
0) is the MaxEnt prior distribution,

which is specified.

F. Saddle Point Method: Approximate or Exact?

We have claimed that the PBN has a tractable LF, but

unless p(xk;H
k
0) is the Gaussian distribution, p(zk;H

k
0) is not

available in closed-form. However, note that the moment gen-

erating function (MGF) of p(zk;H
k
0) is known exactly. Then,

it is a matter of inverting the MGF, which is accomplished

using the saddle point approximation (SPA) [27]. An arbitrary

number of terms can be used to invert the MGF to achieve

desired accuracy [28], [29], however this is unnecessary. The

SPA approximates the shape of the MGF integrand at the

saddle point with a Gaussian shape. Due to the central limit

theorem, and helped by the benign canonical prior distribution,

the Gaussian approximation becomes rapidly accurate as the

dimension of xk increases. The accuracy of the SPA holds

even in the tails of the distribution.

To back up this claim, one can find a matrix W for which

p(zk;H
k
0) is tractable and can be compared with the SPA.

For example, an equal-weighted sum of exponential random

variables has a chi-squared distribution. In this case, the SPA

was shown to have negligible error (See Figure 2 of [27]).

Also, an equal-weighted sum of uniform random variables has

an exact Irwin-Hall distribution which is compared in Figure

2 with the SPA (details found in the appendix of [30]). When

|z − 14| > 6.5, numerical errors in the calculation of the

theoretical distribution dominate, whereas the SPA remains

accurate. Worst-case errors (inside the range where Irwin-Hall

could be computed) were 6e-3, also negligible, and for a small

N ! We also tested the SPA for the truncated Gaussian prior.

5 10 15 20

−20

−15

−10

−5

0

Feature z

Lo
g

D
en

si
ty

Fig. 2. Comparison of log p(z) for SPA (solid line) and Irwin-Hall (circles)
for N = 28.

Because no case could be found with tractable distribution, we

compared the SPA with a 2-dimensional histogram. Figure 3

shows the results for N = 10, M = 2 and 100,000 samples.

Fig. 3. Comparison of histogram (left) with SPA (right) for TG prior.

Not only is the error of the SPA implementation of the PBN

negligible, but the SPA lends itself to exact gradient analysis

for implementation of back-propagation and gradient ascent.

The PBN-Toolkit [31] implements exact gradient analysis, and

stochastic gradient training and evaluation of PBNs.

III. CLASSIFICATION OF WORDS COMMANDS

A. Data set

To obtain a data set that is at the same time relevant,

realistic, and challenging, we chose a subset of the Google

speech commands data [32], selecting three pairs of difficult

to distinguish words: “three, tree”, “no, go”, and “bird, bed”.

Classification experiments were conducted for each word pair.

The data was sampled at 16 kHz and segmented into into 48 ms

Hanning-weighted windows shifted by 16 ms. We used log-

MEL band energy features with 20 MEL-spaced frequency

bands and 45 time steps, for a frequency span of 8 kHz

and a time span of 0.72 seconds. The input dimension was

N = 45×20 = 900. From each of the six classes, we selected

500 training samples, 150 validation samples, at random. The

remaining samples were used to test, averaging about 1500

per class or about a total of 10000 testing samples.

B. Network

The networks had L = 8 layers. The first layer was

convolutional (CONV) with 6 13 × 15 CONV kernels using

CONV padding to create output feature maps equal in size

to the input. Then, 3 × 4 down-sampling was used, resulting

in 15 × 5 output maps, for a total dimension of 450. The

4

second layer was CONV with 40 7× 5 CONV kernels using

no CONV padding. Then, 2 × 1 down-sampling was used,

resulting in 5 × 1 output maps, for a total dimension of 200.

The remaining layers were dense, with 64, 48, 32, 16, 8, and

2 hidden units. The activation function at the output of the

first layer was linear, but all other layers except the last layer

used the truncated Gaussian activation [19] which is similar

to softplus (See Table I). The final output activation function

was TED (See Table I). The network was implemented using

PBN Toolkit [31].

C. Experimental Approach

The goal was to measure the improvement afforded by

discriminative alignment (DA) of a strict Bayesian classifier

constructed from PBNs, and then compare the results with a

state of the art deep neural network (DNN). Let k, l represent

the two words of a word pair and pk(x) the likelihood

function, as computed by the PBN trained on word k. Then,

the cost function to minimize when training pk(x) is given

by Ck = −
∑Nk

i=1
log pk(xi) + γ

∑Nk+Nl

j=1
Ek,l(xj), where

Ek,l(xj) is the cross-entropy cost function for classifying

between classes k and l, γ is the factor that determines the

amount of discriminative influence (typically about 100), i

indexes over only data for word k, but j indexes over data

for both words. Note that the network parameters affect both

pk(x) and Ek,l(x). With γ = 0, a straight PBN results, and

for γ > 0, a PBN-DA results. Note that the generative part of

the cost function depends only on a given data class, but the

discriminative component depends on data from both words

in the pair. Classification is accomplished by just comparing

likelihood functions, i.e. argmaxk pk(x).

D. Classification Results

Table II lists the classification results for PBN and PBN-DA,

as well as for a state of the art discriminative DNN, which was

trained using the same network size and structure, but with

max-pooling in place of down-sampling, and dropout regular-

ization. As can be seen the PBN-DA results are significantly

better than PBN, and much closer to the performance of the

DNN.

”three-tree” ”no-go” ”bird-bed”

PBN 15.75% 14.5% 5.75%

PBN-DA 11.7% 12.2% 4.8%

DNN 8.4% 11.5% 4.3%

DNN + PBN-DA 7.3% 9.3% 3.8%

TABLE II
COMPARISON OF DNN, PBN, AND PBN-DA ERROR PROBABILITY FOR

THE THREE WORD PAIRS.

E. Classifier Combination

Ideally, when combining classifiers, the individual classifiers

should be based on independent views of the data, and

must have comparable performance. This is why a generative

classifier with good performance is highly desirable - because

it should combine well with a discriminative classifier. Fig-

ure 4 shows the results of combining DNN and PBN-DA

Fig. 4. Classifier error as a function of combining factor by word pair.

individually for each word pair using the combined score

ck(x)+α log pk(x), where ck(x) is the classifier score reported

by the discriminative network and α is the combining factor.

The combined classification error is plotted as a function of

the combining factor. On the far right of each plot can be seen

the PBN-DA performance, while on the far left is the DNN

performance. In each case, a significant drop in error is seen,

and at about the same value of combining factor.

F. Implementation and Computational Loading

The PBN was implemented using PBN Toolkit [31] with

graphical processing unit (GPU) acceleration. However, like

any true Bayesian classifier, a model must be separately trained

on each data class, increasing the computational load and

adding to the already high requirements for PBN, which is

an order of magnitude higher then a feed-forward network.

For this reason, PBN-DA is best suited to problems with a

low or moderate number of classes.

IV. SUMMARY OF SUPPLEMENTARY RESULTS

Section VII provides additional results using a second data

set composed of handwritten characters. As for the keyword

classification experiments, the PBN-DA showed significant

improvement over straight PBN. In fact, the PBN-DA per-

formance was very close to the DNN performance.

V. DATA AND SOFTWARE AVAILABILITY

Software in Python as well as data and network parameters

for the data set described in the supplemental material are

made available online at http://class-specific.com/pbntk.

VI. CONCLUSIONS AND FUTURE WORK

The PBN is a layered generative network with tractable

LF and shares an embodiment with a multi-layer perceptron.

This allows a Bayesian classifier constructed from PBNs to

benefit from using a combined discriminative/generative cost

function that works to “align” the weights with the decision

boundaries. In this paper, we demonstrated the effectiveness of

discriminative alignment of PBNs in classification experiments

for spoken keywords as well as for handwritten characters. We

also justified the claim that a PBN has a tractable likelihood

function, despite using the saddle point approximation. Future

work includes the application of PBN to larger data sets and

the exploration of the relationship of PBN to the myriad

generative methods currently being proposed, and how to best

take advantage of the unique properties of PBN.

5

REFERENCES

[1] C. Mayer and R. Timofte, “Adversarial sampling for active learning,”
arXiv:1808.06671, to appear WACV 2020, 2019.

[2] J. Lasserre, C. Bishop, and T. Minka, “Principled hybrids of generative
and discriminative models,” vol. 1, pp. 87– 94, 07 2006.

[3] V. Vapnik, The Nature of Statistical Learning. Springer, 1999.

[4] T. Jaakkola and D. Haussler, “Exploiting generative models in dis-
criminative classifiers,” tech. rep., Dept. of Computer Science, Univ.
of California, 1998.

[5] R. Raina, Y. Shen, A. Ng, and A. McCallum, “Classification with hybrid
generative /discriminative models,” in Proceedings of NIPS (Neural

Information Processing Systems) 2004, 2004.

[6] S. Fine, J. Navratil, and R. Gopinath, “Enhancing gmm scores using
SVM hints,” in Proceedings of the 7th European Conference on Speech

Communication and Technology (EuroSpeech), 2001.

[7] A. Fujino, N. Ueda, and K. Saito, “A hybrid generative/discriminative
approach to semi-supervised classifier design,” in Proceedings of the

National Conference on Artificial Intelligence, vol. 20, 2005.

[8] A. Holub, M. Welling, and P. Perona, “Hybrid generative-discriminative
visual categorization,” in Proceedings of the International Journal of

Computer Vision, vol. 77, pp. 239–258, 2008.

[9] A. Bosch, A. Zisserman, and X. Muoz, “Scene classification using
a hybrid generative/discriminative approach,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 712–727,
2008.

[10] T. Minka, “Discriminative models, not discriminative training,” Mi-

crosoft Research Ltd, technical report, 2005.

[11] C. Bishop and J. Lasserre, “Generative or discriminative? getting the
best of both worlds,” Bayesian Statistics, vol. 8, pp. 3–24, 2007.

[12] M. Ranzato, Y. Boreau, and Y. LeCun, “Sparse feature learning for deep
belief networks,” in Proceedings of NIPS 2007, 2007.

[13] Y. Bengio, P. Lamblin, D. Popovici, , and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proceedings of NIPS 2006, 2006.

[14] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” in Neural Computation 2006, 2006.

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
Cambridge, MA: MIT press, 2016.

[16] P. M. Baggenstoss, “Maximum entropy PDF design using feature density
constraints: Applications in signal processing,” IEEE Trans. Signal

Processing, vol. 63, June 2015.

[17] P. M. Baggenstoss, “Uniform manifold sampling (UMS): Sampling
the maximum entropy pdf,” IEEE Transactions on Signal Processing,
vol. 65, pp. 2455–2470, May 2017.

[18] P. M. Baggenstoss, “On the duality between belief networks and feed-
forward neural networks,” IEEE Transactions on Neural Networks and

Learning Systems, pp. 1–11, 2018.

[19] P. M. Baggenstoss, “A neural network based on first principles,” in
ICASSP 2020, Barcelona (virtual), (Barcelona, Spain), Sep 2020.

[20] P. M. Baggenstoss, “Applications of projected belief networks (PBN),”
Proceedings of EUSIPCO, A Corunã, Spain, 2019.

[21] P. M. Baggenstoss, “The projected belief network classifier: both gener-
ative and discriminative,” Proceedings of EUSIPCO, Amsterdam, 2020.

[22] P. M. Baggenstoss, “The PDF projection theorem and the class-specific
method,” IEEE Trans Signal Processing, pp. 672–685, March 2003.

[23] P. M. Baggenstoss, “Beyond moments: Extending the maximum entropy
principle to feature distribution constraints,” Entropy, vol. 20, no. 9,
2018.

[24] E. T. Jaynes, “On the rationale of maximum-entropy methods,” Proceed-

ings of IEEE, vol. 70, no. 9, pp. 939–952, 1982.

[25] F. Palmieri and D. Ciuonzo, “Objective priors from maximum entropy in
data classification,” Information Fusion, vol. 14, pp. 186–198, 04 2013.

[26] J. N. Kapur, Maximum Entropy Models in Science and Engineering.
Wiley (Eastern), 1993.

[27] S. M. Kay, A. H. Nuttall, and P. M. Baggenstoss, “Multidimensional
probability density function approximations for detection, classification,
and model order selection,” IEEE Transactions on Signal Processing,
vol. 49, pp. 2240–2252, Oct 2001.

[28] O. Barndorff-Nielsen and D. R. Cox, “Edgeworth and saddle-point
approximations with statistical applications,” Journal of the Royal Sta-

tistical Society: Series B (Methodological), vol. 41, no. 3, pp. 279–299,
1979.

[29] A. H. Nuttall, “Saddlepoint approximation and first-order correction term
to the joint probability density function of M quadratic and linear forms
in K Gaussian random variables with arbitrary means and covariances,”
NUWC Technical Report 11262, December 2000.

[30] P. M. Baggenstoss, “Evaluating the RBM without integration using pdf
projection,” in Proceedings of EUSIPCO 2017, Island of Kos, Greece,
Aug 2017.

[31] P. Baggenstoss, “PBN Toolkit,” http://class-specific.com/pbntk.
[32] P. Warden, “Speech commands: A dataset for limited-vocabulary speech

recognition,” arXiv:1804.03209, 2018.
[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86,
pp. 2278–2324, Nov 1998.

6

VII. SUPPLEMENTAL RESULTS

To strengthen the claims made in this paper, we made sim-

ilar experiments using a separate data corpus. The experiment

follows the approach of Section III.

A. Data Description

As a supplemental data set, we chose a subset of the MNIST

data corpus [33]. The three characters “3”, “8”, and “9” were

chosen and down-sampled 2:1 to a data size of 14× 14, with

dimension N = 196. We used 500 samples of each class for

training and the rest for testing. Because MNIST pixel data

is coarsely quantized in the range [0,1], it is poorly suited

for generative modeling with a continuous-valued distribution.

To make the data suitable for generative modeling, the data

was first dithered 1, then transformed to R
N by applying the

inverse sigmoid function, resulting in a smooth Gaussian-like

distribution in the range -10 and 10.

B. Network

The PBN networks had 6 layers. The first layer was con-

volutional (CONV) with 3 9× 9 CONV kernels using CONV

padding to create output feature maps equal in size to the

input. Then, 2×2 down-sampling was used, resulting in 7×7
output maps, for a total dimension of 147. The second layer

was CONV with 20 5 × 5 CONV kernels using no CONV

padding. Then, 2 × 2 down-sampling was used, resulting in

2×2 output maps, for a total dimension of 80. The remaining

layers were dense, with 32, 16, 8, and 3 hidden units. The

activation function at the output of the first layer was linear,

but all other layers except the last layer used the truncated

Gaussian activation [19] which is similar to softplus (See Table

I). The final output activation function was TED (See Table

I). The network was implemented using PBN Toolkit [31].

C. Classification Results

Table III lists the classification results for PBN and PBN-

DA, as well as for a state of the art discriminative DNN,

which was trained using the same network size and structure,

but with max-pooling in place of down-sampling, and dropout

regularization. Similarly to the keyword data results presented

in Section III, the PBN-DA results are significantly better than

PBN and approach the DNN performance.

PBN PBN-DA DNN DNN + PBN-DA

93.5 % 96.47% 97.08% 97.43%

TABLE III
COMPARISON OF DNN, PBN, AND PBN-DA ERROR PROBABILITY FOR

THE THREE WORD PAIRS.

Figure 5 shows the results for combining PBN-DA with

the DNN, as described in Section III. Once again, the com-

bined results are superior to either PBN-DA or DNN alone,

indicating effective classifier combination, a result of combin-

ing classifiers with comparable performance and independent

views of the data.

1For pixel values above 0.5, a small exponential-distributed random value
was subtracted, but for pixel values below 0.5, a similar random value was
added.

10
−5

10
0

2.6

2.8

3

3.2

3.4

3.6

3.8

DNN

Combining Factor

E
rr

or
, p

er
ce

nt

PBN−DA

DNN

Fig. 5. Classifier error as a function of combining factor for the MNIST data
set.

D. Data and Software Availability

To facilitate the duplication of these results by researchers,

we have made all data and software (in Python scripts)

available online at http://class-specific.com/pbntk.

