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ABSTRACT

In this paper, a Neural network is derived from first principles

and assuming a maximum entropy (MaxEnt) prior and that a

network layer starts with a linear transformation. A posterior

distribution for the input data given the linear transformation

output is derived. A new theorem is used to find a closed-

form expression for the posterior and for its mean, which is

a MaxEnt data reconstruction employing a special activation

function. Combining layers results in an auto-encoder with

conventional feed-forward analysis network and a type of lin-

ear Bayesian belief network in the reconstruction path. The

new theorem unifies previous results relevant to some special

cases. Methods for sampling the posterior are provided.

Index Terms— Neural networks, Maximum Entropy, Ac-

tivation Functions, Projected Belief Network

1. INTRODUCTION

1.1. Motivation

Despite the brilliant success of deep networks, there has been

insufficient attention payed to statistical optimality. Networks

and their activation functions are generally selected empiri-

cally to learn general functions [1]. In generative networks,

the activation functions revolve around approximating the ex-

pected value of generating distributions that are selected for

tractability [2–4] or are empirically determined [5]. Despite

the elegant mathematical formulations, restricted Boltzmann

machines (RBMs) [6], and variation autoencoders [7], the

models are also selected based on tractability or empirical

performance. This paper seeks to derive the network struc-

ture and activation function from first principles by deducing

the network structure from the a posteriori distribution of the

visible data given the layer output.

1.2. Problem Statement

Given a high-dimensional input data ① ✷ ❘◆ , a lower-

dimensional feature is computed by linear transformation,

③ ❂ ❲✵①, where ③ ✷ ❘▼ , and � ❁ ✁ . The goal is to

derive an expression for ♣✭①❥③✮, from which the optimal re-

construction network and activation function can be inferred.

The prior ♣✂✭①✮, is specified by the principle of maximum

entropy (MaxEnt). The main idea is illustrated in Figure 1.

The diagram shows two network layers, but we will focus on
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Fig. 1. Block diagram.

just the first layer for now. The input data ① is operated on

by a linear transformation: ③ ❂ ❲✵①✿ A bias and activation

function are applied prior to the next layer, but this is not

relevant to analyzing the first layer. For now, the question is

what can be inferred about ♣✭①✮ from ③, bypassing layer 2

(See “bypass” in Fig. 1). The remaining components in layer

1 are described below and layer 2 is explained in Section 4.

2. MATHEMATICAL APPROACH

2.1. Prior Distribution

To proceed, it is necessary to define the a priori distribution

♣✂✭①✮ that quantifies the expectation about ① before feature

③ is measured. The principle of maximum entropy (Max-

Ent) [8] proposes that the entropy of a distribution, given by

❍❢♣✭①✮❣ ❂ ✄
☎

✆ ♣✭①✮ ❧♦✝✭♣✭①✮✮ ❞① should be as high as

possible subject to the known constraints. These distributions

are generally of the exponential class [9]. Consider the fol-

lowing univariate exponential class of distributions:

❧♦✝ ♣✭✞❀ ☛✮ ❂ ☛✞ ✰ ❜✞
✟
✄ ❧♦✝ ❩✭☛✮✠ (1)

where the dependence on ❜ has been removed from the nota-

tion because it is fixed by the choice of prior. Parameter ☛

plays a special role because it controls the distribution mean.



This class encompasses Gaussian, exponential, and their trun-

cated variants and includes all the MaxEnt distributions that

will be necessary in this discussion. Let the expected value of

distribution (1) be written as a function of ☛ as

✕✭☛✮
✁
❂ ❊❢①❀ ☛❣ ❂

❩

�
① ♣✭①❀ ☛✮ ❞①✿ (2)

In keeping with maximum entropy, ♣✵✭✂✮ should be con-

structed from ◆ independent univariate distributions (1) as

follows

❧♦✄ ♣✵✭✂✮ ❂

☎❳

✐✆✶

❧♦✄ ♣✭①✐❀ ☛✵✮✿ (3)

This class includes independent and identically distributed

(iid) Gaussian, exponential, and their truncated variants, and

they have highest entropy among all multivariate distributions

under constraints that will be proposed.

2.2. Manifold Distribution

Conditioned on knowing ③, ✂ can only exist on the set

▼✭③✮ ❂ ❢✂ ✝ ❲
✞
✂ ❂ ③❣✿ (4)

This is the set (a manifold) of all possible values of ✂ that ex-

actly reproduce the measured value ③. The posterior is there-

fore a manifold distribution

♣✭✂❥③✮ ❂ ♣✵✭✂✮✟

✥❩

✠✷✡☞✌✍
♣✵✭✂✮ ❞✂

✦

✎ ✂ ✏ ▼✭③✮✎

(5)

which is ♣✵✭✂✮ projected onto the manifold, then normalized

so it integrates to 1. To draw samples from (5), samples are

drawn from the manifold▼✭③✮ with probability proportional

to the value of the prior distribution ♣✵✭✂✮. It can be shown

[10] that the denominator in (5) can be written

❩

✠✷✡☞✌✍
♣✵✭✂✮ ❞✂ ❂ ♣✵✭③✮✎

which is the prior feature distribution, i.e. distribution of ③

under the assumption that ✂ ✘ ♣✵✭✂✮. Rewriting (5),

♣✭✂❥③✮ ❂
♣✵✭✂✮

♣✵✭③✮
✎ ✂ ✏ ▼✭③✮✿ (6)

Note that the denominator has a fixed value on the manifold,

so the manifold distribution is shaped only by ♣✵✭✂✮. This

quantity is known in the method of PDF projection [10, 11].

2.3. Surrogate Density and Main Theoem

Despite the simple form of (6), it is not useful for sampling

or determining the mean of ♣✭✂❥③✮, and is not even a proper

distribution, having infinite density on an infinitely thin man-

ifold. To find a proper distribution that approximates (5), we

use a surrogate density [12], which is a proper distribution

that shares the properties of (5), which are (a) item proba-

bility mass concentrated on the manifold ▼✭③✮, (b) mean

✖✂✑ ✏ ▼✭③✮ (because ▼✭③✮ is convex), and (c) density on

the manifold proportional to ♣✵✭✂✮. The following theorem

gives form to the surrogate density.

Theorem 1 Let prior ♣✵✭✂✮ be written as (3) with univariate

densities ♣✭①❀ ☛✵✮ of class (1) with mean ✕✭☛✵✮. Then, the

surrogate density for ✒✑✭✂✮ can be written

❧♦✄ ♣✭✂❀ ✓✵ ✰ ✓✮ ❂

☎❳

✐✆✶

❧♦✄ ♣✭①✐❀ ☛✵ ✰ ☛✐✮✎ (7)

where ✓ ❂❲❤✑✎ and ❤✑ is the solution of

❲
✞
✕ ✭✓✵ ✰❲❤✮ ❂ ③✿ (8)

Furthermore, the mean of the surrogate density is asymptot-

ically (for large ◆ ) equal to the mean and centroid of the

manifold▼✭③✮ and equals

✖✂✑ ❂ ✕✭✓✵ ✰❲❤✑✮✿ (9)

Outline of Proof:. To show that solution ❤✑ solving (8)

exists, it is shown in Section 2.4, that (8) is the same as the

saddlepoint (SP) equation for the SP expansion of ♣✵✭③✮.

Since for the exponential family (1), the SP expansion exists

over the entire range of ③ (see [13] appendix), it appears, and

is supported by numerous experiments, that the solution ex-

ists whenever ③ is valid, i.e. whenever ③ ❂ ❲✞✂ for a sample

✂ in the support of ♣✵✭✂✮. Since ✖✂✑ ❂ ✕ ✭✓✵ ✰ ✓✮, it is clear

that❲✞✖✂✑ ❂ ③✎ meeting property (b) for a surrogate density.

Using (3),(1), the gradient of ❧♦✄ ♣✭✂❀ ✓✵ ✰ ✓✮ with respect

to ✂ is
✔
❅ ✗✙✚ ✛☞✠✜✓✢✣✓✍

❅✠

✤

❂ ✓✵ ✰ ✓ ✰ ✧❜✂✿ In order that (7)

is proportional to ♣✵✭✂✮ on the manifold, it is necessary that

the component of this gradient in any direction parallel to

the manifold (i.e. orthogonal to columns of❲) is the same

as for the prior ♣✵✭✂✮. This can be mathematically written

❇✞ ❬✓✵ ✰ ✓ ✰ ✧❜✂❪ ❂ ❇✞ ❬✓✵ ✰ ✧❜✂❪ ✎ for orthonormal ma-

trix❇ spanning the linear subspace orthogonal to the columns

of❲. It is then clear that ✓ must be fully orthogonal to ❇,

therefore of the form ✓ ❂ ❲❤. This fulfills property (c) of

the surrogate density. To fulfill property (a), it can be shown

that the probability mass of the surrogate density indeed con-

verges to the manifold for large ◆ (see [12], Appendix A).

To simplify notation, we define the function ★✭❤✮ ❂

❲✞✕ ✭❲❤✮ ❂ ③ and its inverse: ❤✑ ❂ ★
✩✶✭③✮✿ The concept

of ★✩✶✭③✮ is illustrated in Figure 1. Feature ③, is converted

to ❤ through ★✩✶✭③✮, then multiplied by ❲ to raise the di-

mension back to ◆ , and finally passed through activation



function ✕✭ ✮ to produce ✖①③ . Optionally, it can be passed

to the generating distributions ♣✭①❀☛✵ ✰ ☛✮ for stochastic

generation. According to the definition of ✌�✶✭ ✮, it is clear

that ❲✁✖①③ ❂ ✂✄ or in other words, the feature ✂ is recov-

ered exactly when ✖①③ is processed by the forward path. In

this role, ✌�✶✭✂✮ acts as a non-linearity (but is not applied

element-wise). Despite the iterative solution of ✌�✶✭✂✮, its

derivatives are easly calculated from ✌✭❤✮, so are amenable

to back-propagation training for optmizing the network pa-

rameters.

2.4. Properties of the Surrogate Density.

The surrogate density converges to the posterior ♣✭①❥✂✮, and

so the mean of the surrogate density approaches the mean of

♣✭①❥✂✮. This convergence occurs quickly and low dimension

as has been demonstrated in certain cases (see fig. 8 in [12]).

The surrogate density mean ✖①③ given by (9) enjoys numer-

ous properties. As conditional mean estimator, it has many

well-known optimal properties [14]. Another special case of

(9) corresponds to autoregressive spectral estimation, which

can be generalized for conditioning on any linear function of

the spectrum, such as MaxEnt inversion of MEL band fea-

tures [12]. A special case of (9) is mathematically the same

as classical maximum entropy image reconstruction [15, 16].

It is also not surprising, given form (6), that the surrogate den-

sity has a close relationship to ♣✵✭✂✮. In fact, it can be shown

that ❤③ is also the saddlepoint for the SP approximation to

♣✵✭✂✮. The equivalence of the SP equation to (8) can be seen

in ( [17], equation (25), page 2245), which is the general SP

equation for the distribution of the linear sum of independent

random variables, and it is easily shown that ❝✁✭❜♥✮ ❂ ✕✭☎♥✮.

It can also be shown that ❤③ is the maximum likelihood esti-

mate of ❤ under the likelihood function (7) [13].

3. THREE CASES OF ❳

In the following sections, the MaxEnt prior ♣✵✭①✮ is defined,

and the distribution mean ✕✭☎✮, the MaxEnt activation func-

tion, is provided for three cases of the range of ①, denoted

by ❳. In addition, it is explained how to sample from the

manifold ▼✭✂✮. Note that manifold sampling is exact sam-

pling of ♣✭①❥✂✮, which differs from sampling from the sur-

rogate density. However, experiments have demonstrated the

almost perfect correspondence between the two distributions

(e.g. Figures 8,10,11 in [18]).

3.1. Unit hypercube ❯◆

In unit hypercube, denoted by ❯◆ , elements of ① are in the

range ❬✆✄ ✝❪, the case for intensity images, or if ① is the out-

put of a sigmoid activation function. The uniform prior is

the MaxEnt distribution in ❬✆✄ ✝❪, ♣✵✭①✮ ❂ ✝, which is the

trivial case of (1) with ☎✵ ❂ ✆, ❜ ❂ ✆. Sampling from

▼✭✂✮ uniformly within ❯◆ is done using a type of Monte

Carlo Markov chain (MCMC) called hit-and-run [19], with

modification for ❯◆ as explained in detail in ( [12], Sec. V,

p. 2465). For the surrogate density, with ☎✐ ✻❂ ✆, a trun-

cated exponential distribution (TED) is produced, ♣✭✞❀ ☎✮ ❂
✟

❡✠�✶ ✡✟☞✄ ✆ ❃ ✞ ❃ ✝. The activation function is the TED

nonlinearity [12, 20]

✕✭☎✮ ❂
✡✟

✡✟ ✍ ✝
✍

✝

☎
(10)

which resembles the sigmoid, ✕✭☎✮ ✬ ✛✭☎✎✸✮. This problem

has been studied in detail in ( [12], Sec. V, p. 2465).

3.2. Positive Quadrant P◆

We assume that elements of ① are positive, so exist in the pos-

itive quadrant of ❘◆ , denoted by P◆ . This happens if ① is the

output of an previous network layer and a rectifying activation

function was used, or if ① is some kind of spectral or intensity

data that is inherently positive. There is no proper MaxEnt

distribution on the open interval ❬✆✄ ✏❪ without constraining

the mean or variance, resulting in two solutions.

3.2.1. Positive Quadrant P◆ , constrained mean (exponential

prior)

The mean can be constrained by including the statistic

t✶✭①✮ ❂
✑◆

✐✒✶ ✞✐ in the feature, then the mean constraint

is implicit in the conditioning on ✂. This is conveniently

achieved by modifying ❲ so that one of the columns is a

constant. With constrained mean, the exponential distribution

is MaxEnt on ❬✆✄ ✏❪, the case of (1) with ☎✵ ❂ ✝, ❜ ❂ ✆.

Then

♣✵✭①✮ ❂ ✡
✓✔

✗✘✙ ☞✗ ✿

Inclusion of t✶✭①✮ in the feature also insures that ♣✵✭①✮ is con-

stant on the manifold, because ♣✵✭①✮ ❂ ✡✚✙✜✢✣ , meaning that

the manifold distribution is uniform. Methods for uniform

sampling in a simplex or convex subspace based on Monte

Carlo Markov chain (MCMC) have been developed [19] and

is treated in detail in ( [12], Sec. IV, p. 2460). The activation

function for the exponential prior is quite strange, ✕✭☎✮ ❂
✶
✟ ✿

This case is mathematically the same as classical maximum

entropy image reconstruction [15, 16].

3.2.2. Positive Quadrant P◆ , constrained variance (trun-

cated Gaussian prior)

If we are willing to assume a fixed variance, the truncated

Gaussian mean parameter 0 and variance parameter 1 (not the

same as mean 0 and variance 1) provides the distribution with

maximum entropy on ❬✆✄ ✏❪ [9]. This is the case of (1) with

☎✵ ❂ ✆, ❜ ❂ ✝. This can also be written

♣✵✭①✮ ❂

◆❨

✐✒✶

✷✤✭✞✐✮✄ ✞✐ ❃ ✆✄ ✽✥✄ (11)



where ◆✭①✮ ❂
❡�✁

✷✂✷
♣
✄✙

✿ To sample ▼✭③✮ with this prior, an

MCMC method similar to the exponential case (given in (

[12], Sec. IV, p. 2460) can be used. One starts with a sample

☎ that lies on the manifold. We then choose a direction (a

vector orthogonal to the column space of ❲) to move, and

determine the line segment on this line for which ☎ remains

positive. The distance moved along this direction is drawn

from a truncated Gaussian distribution with these limits. The

process repeats by selecing a new direction. The activation

function is the mean of the truncated Gaussian:

✕✭☛✮ ❂ ☛ ✰
◆✭☛✮

✟✭☛✮
(12)

which resembles softplus (see Figure 2).

3.3. Unconstrained ❘✆

There is no proper MaxEnt distribution on the open inter-

val ❬✝✶❀ ✶❪ without constraining the variance. In many

cases, data has been normalized, so we are justified in us-

ing a standard Normal prior, which is the maximum entropy

distribution on ❘✆ for known variance [9]. Because we as-

sume ✞✵✭☎✮ is standard normal (Gaussian with zero mean and

variance 1), sampling from (6) is trivial. All samples on the

manifold can be written ☎ ❂ ✖☎✠ ✰ ❇✉❀ where ✖☎✠ ❂ ❲❤✠ ,

where ❤✠ ❂ ✭❲✡❲✮
☞✌

③❀ and ❇ is the same as in the proof

of Theorem 1. To conform to the assumed prior distribution,

✉ is a set of ✭✍✝✎✮ independent Gaussian random variables

of zero mean and variance 1. The activation function is linear,

✕✭①✮ ❂ ①.

3.4. Summary and Remarks

A network layer structure has been inferred from the pos-

terior ✞✭☎❥③✮ and a MaxEnt prior ✞✵✭☎✮ ❂ ✞✭☎✏✑✵✮ (see

Fig. 1). To reconstruct ☎, the linear transformation output

③ ❂ ❲✡☎ is passed through the dimension-preserving func-

tion ✒☞✌, which exists whenever ☎ is in the support of ✞✵✭☎✮,

then multiplied by❲. A bias ✑✵ is added, then an activation

function ✕✭ ✮ that is derived from ✞✵✭☎✮ is applied. The re-

sulting data vector is the conditional mean ❊❢☎❥③❣ and enjoys

many optimality properties. The activation functions are:

Uniform prior: TED nonlinearity (10),

exponential prior: ✕✭☛✮ ❂ ✓✔☛,

truncated Gaussian prior: T-G nonlinearity (12),

Gaussian prior: ✕✭☛✮ ❂ ☛.

These activation functions sometimes resemble commonly-

used functions (see Fig. 2). Note that the T-G nonlinear-

ity approaches the rectified linear unit (RELU) as ✛✄✵ ✦ ✗.

Alternatively, ✕✭ ✮ can be replaced by the generating distri-

bution ✞✭☎✏✑✵ ✰ ✑✮ for stochastic generation. For a single

layer, this would produce an RBM with deterministic forward

path.

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TED vs. Sigmoid

TED

sigmoid(x/3)

−10 −5 0 5 10
0

2

4

6

8

10

12

softplus
T−Gauss

T−Gauss vs. Softplus

Fig. 2. Left: TED activation compared to Sigmoid. Right:

T-Gauss activation compared to Softplus.

4. BUILDING A NETWORK

In Figure 1, a 2-layer network is created by adding another

MaxEnt layer. The forward path (top) is a standard feed-

forward network employing the MaxEnt activation functions.

The data is first passed through a bias and activation func-

tion ✕✄✭ ✮ before being presented to the second layer’s linear

transform. Note that after layer 2 reconstructs its input in the

backward path (✖☎✠✘✄✚) the activation function ✕✄✭ ✮ and bias

must be inverted before being processed by ✒☞✌. However,

because the forward activation function ✕✄✭ ✮ is the same as

the MaxEnt activation function for layer 2, then ✕✄✭ ✮ can-

cels ✕☞✌✄ ✭ ✮, resulting in a simplified backward path! It is

also worth noting that in the backward (reconstruction) path,

stochastic generation using ✞✭☎✏✑✵✰✑✮ can be used in place

of activation functions to create stochastic networks.

The reverse path (bottom) consists of applying ✒☞✌✭③✮

(after removal of bias, if needed), followed by dimension-

increasing transformation by the layer weight matrices (same

matrix used in the forward path). This eliminates the need

for separate reconstruction weights, and decreases network

parameter count. This has been called a deterministic pro-

jected belief network [18, 21] and has been shown to sig-

nificantly out-perform a standard auto-encoder of exactly the

same specification [21].

5. CONCLUSIONS

In this paper, a new theorem has been presented that pro-

vides a closed-form asymptotic (large ✍ ) expression for the

conditional mean ✖☎✠ ❂ ❊❢☎❥③❣ given the output ③ of a

dimension-reducing linear transformation. The computation

of the conditional mean resembles a linear Bayesian belief

network layer with special non-linear function preceding the

linear transformation and special activation function. The

theorem is generalized for a class of exponential family prior

distributions and with support on ❘✆ , the positive quadrant

P✆ , and the unit hypercube ❯✆ . Methods to sample the pos-

terior ✞✭☎❥③✮ are provided. The method can be extended to

multiple layers to form genertive networks.
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[4] S. Ravanbakhsh, B. Póczos, J. Schneider, D. Schuur-

mans, and R. Greiner, “Stochastic neural networks with

monotonic activation functions,” Proceedings of the 19

th International Conference on Artificial Intelligence

and Statistics (AISTATS), Cadiz, Spain, 2016.

[5] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for

activation functions,” arXiv preprint arXiv:1710.05941,

2017.

[6] M. Welling, M. Rosen-Zvi, and G. Hinton, “Exponen-

tial family harmoniums with an application to informa-

tion retrieval,” Advances in neural information process-

ing systems, 2004.

[7] C. Doersch, “Tutorial on variational autoencoders,”

arXiv preprint arXiv:1606.05908, 2016.

[8] E. T. Jaynes, “On the rationale of maximum-entropy

methods,” Proceedings of IEEE, vol. 70, no. 9, pp. 939–

952, 1982.

[9] J. N. Kapur, Maximum Entropy Models in Science and

Engineering. Wiley (Eastern), 1993.

[10] P. M. Baggenstoss, “Maximum entropy PDF design us-

ing feature density constraints: Applications in signal

processing,” IEEE Trans. Signal Processing, vol. 63,

June 2015.

[11] P. M. Baggenstoss, “The PDF projection theorem and

the class-specific method,” IEEE Trans Signal Process-

ing, pp. 672–685, March 2003.

[12] P. M. Baggenstoss, “Uniform manifold sampling

(UMS): Sampling the maximum entropy pdf,” IEEE

Transactions on Signal Processing, vol. 65, pp. 2455–

2470, May 2017.

[13] O. Barndorff-Nielsen and D. R. Cox, “Edgeworth and

saddle-point approximations with statistical applica-

tions,” Journal of the Royal Statistical Society: Series

B (Methodological), vol. 41, no. 3, pp. 279–299, 1979.

[14] S. Kay, Fundamentals of Statisticsl Signal Processing,

Estimation Theory. Prentice Hall, Upper Saddle River,

New Jersey, USA, 1993.

[15] S. J. Wernecke and L. R. D’Addario, “Maximum en-

tropy image reconstruction,” IEEE Trans. Computers,

vol. C-26, no. 4, pp. 351–364, 1977.

[16] G. Wei and H. Zhen-Ya, “A new algorithm for maxi-

mum entropy image reconstruction,” in Proceedings of

ICASSP-87, vol. 12, pp. 595–597, April 1987.

[17] S. M. Kay, A. H. Nuttall, and P. M. Baggenstoss, “Mul-

tidimensional probability density function approxima-

tions for detection, classification, and model order selec-

tion,” IEEE Transactions on Signal Processing, vol. 49,

pp. 2240–2252, Oct 2001.

[18] P. M. Baggenstoss, “On the duality between belief net-

works and feed-forward neural networks,” IEEE Trans-

actions on Neural Networks and Learning Systems,

pp. 1–11, 2018.

[19] S. Kiatsupaibul, R. Smith, and Z. Zabinsky, “An analysis

of a variation of hit-and-run for uniform sampling from

general regions,” ACM Transactions on Modeling and

Computer Simulation (TOMACS), vol. 21, no. 3, 2011.

[20] P. M. Baggenstoss, “Evaluating the RBM without in-

tegration using pdf projection,” in Proceedings of EU-

SIPCO 2017, Island of Kos, Greece, Aug 2017.

[21] P. M. Baggenstoss, “Applications of projected belief net-

works (pbn),” in Proceedings of EUSIPCO 2019, (La

Coruña, Spain), Sep 2019.


