PBN Toolit: A Versatile Toolkit for Generative Networks

Dr. Paul M. Baggenstoss
Fraunhofer FKIE, Fraunhoferstr 20
53343 Wachtberg, Germany
p-m.baggenstossQieee.org
http://class-specific.com/csf/index.html

June 2, 2021

Abstract
This document describes the PBN Toolkit.

1 Installation and Prerequisites
1.1 Prerequisites and Installation

~—TBD

1.2 GPU and Smegma Library
—— TBD

1.3 Starting PBN-Tk
—TBD

2 Basic Operation, Controls and Features

2.1 GUI Layout

Figure 1 shows the PBN-Tk GUI. In the figure, each section of the GUI is labeled and will be refered to in
the following text. Table 1

Table 1 gives the correspondence between the document sections and the sections of the GUI interface.
To avoid confusion, a document section is refered to as “Section XXX”, and a GUI section is refered to as
“XXX Section”.

General Parameters Section

\ General Parameters
S0 B T e TS

—~— Section

- SAVE QUIT
__PLT Refresty

Forward Section MGNMA?A Section

AMIN ‘VE

B STDV DECAY L2.REG [L.RATE
1le-12 | 0

0 1.0 1e-06 1le-5
Data 0 Y 1 e
. TRAIN DATA : train * none M | LYR
Section ds212223 | AL !-AOTJ “ valid FWD\ * sigmoid | Mgo = Partl'tlonlng
EVAL DATA VAR 0.0001] ; ‘ test| GO softmax TRN MIN-S | sAV\ Sectlon
45212223 SHFT 0.0 | * Rand AR T— gmm | 0.001 ‘ 2
Model Type: Network
Section N\ 2= | [f g 530 2 Parameter
Loap|save || R - [SPASec Table
PBN A vati
EDIN 7 r e "
Section PBN| upd.szin | - PLT[| sP| DPBN | [l Dem_latlve
CTAN o upd.s2v (xEo | 7An | - TANLYRD [|nto| 1 open| Section
EVAL| ~ dropout | C 0 o UETEED B TRN
AEQ_ 7 AEC| | SYN DNN VUPDN] ;BM LYRO | peN-syn| MXP LYRO | Show
Section WEEo | cvAL | ICNEEE || ten o | apon TAN | Zro | Fac 1.0 | Scale
~TAN | pec |\~ TR © TR = Il PcA | s2 1.0 | set |
X EPS 1 e || P2 \
Adversarial Lfo TRG| | pata f | EvAL
Attack nl eo 51| g RBM Weights
Section DNN / EMBMNLQ UPDN gection Section
Section =~ Section
Section

Figure 1: The PBN-Tk Graphical Interface.

GUI Section

Documentation Section

GUI Section

Documentation Section

General Parameters Section 4 Forward Section 5
GMM Section 12 Data Section 2.2
Partitioning Section 10.5 Model Section 3
Network Parameter Table 3.3 PBN Section 10
SPA Section 10.4 DPBN Section 11

PBN Synth Section 10.2 AEC Section 6

DNN Section 7 UPDN Section 9

RBM Section 8 Weights Section 13
Adversarial Attack (AA) Section 18 PBN-C Section 17

Table 1: Correspondence of GUI sections to sections in the Documentation

2.2

Data Input

2.2.1 Creating New Data Sets

To create a new data set, you will need to create a MATLAB data file named [data set] .mat, where
data set is a chosen data set name. In Python, these files can be read and written using the loadmat and
savemat functions in the scipy.io package. The file needs to contain the following variables:

Required variables:

e X : data matrix with shape N-by-nsamp, nsamp is the number of samples and N is the total dimension.

Variable X must always be a 2-dimensional matrix. Data can be 3, 2, or 1 dimensional, but X must be
always re-shaped to N-by-nsamp. The integer variables N1, N2, nchan define the actual dimension of
the data. MATLAB commands that produce the right data shapes are illustrated below.

1. For 1D (vector) data,
X = data(1:N,1:nsamp);
2. For 2D (image) data,
X = reshape(data(1:N2,1:N1,1:nsamp) , N1*N2,nsamp);
3. For 3D (color image) data,
X =reshape(data(1:N2,1:N1,1:nchan,l:nsamp) , N1*N2*nchan,nsamp);
N2 : Integer. First MATLAB data dimension (third dimension in Python)
N1 : Integer. Second MATLAB data dimension (second dimension in Python)
nchan : Integer. Third MATLAB data dimension (first dimension in Python)
nclass: Integer. Number of data classes (for a classification experiment)

nonlin: Integer. Nonlinearity (activation function). This is the type of activation function that “could
have” produced the data. It is also the activation function used to reconstruct visible data. It is also
important to know this because it defines the type of PBN for the first layer. More about activation
functions is found in Section 3.1. There are three possibilities depending on the range of the data
values:

nonlin | DATA VALUES Assumption
0 [—00, 0] Gaussian
5 [0, 1] Uniform
10 [0, o0] Truncated Gaussian

Optional variables:

1.

tch: matrix of dimension (nclass-by-nsamp) with values of 0 or 1, one-hot encoding of the ground truth
for training data

. Xv: Validation data matrix (like X) of dimension (N-by-nv) where nv = number of validation samples

. tchv: matrix of dimension (nclass-by-nv) with values of 0 or 1, one-hot encoding of the ground truth

for validation data

. X2: Test data matrix (like X) of dimension (N-by-nt) where nt = number of test samples

. tch2: matrix of dimension (nclass-by-nt) with values of 0 or 1, one-hot encoding of the ground truth

for test data

2.3 Loading Data

Once you have created a new data set, enter the data set name in "TRAIN DATA” entry box in the Data
Section, then press ”LOAD”. For example, to load ’ds81.mat’, enter ’ds81’ The first time, it will take longer.
Once data is loaded, the “EVAL DATA” field will be updated to match the "TRAIN DATA” field. The
“EVAL DATA” can be changed to reflect the desired data classes for evaluation (when one of the "EVAL”
buttons is pressed). To avoid having to input data set every time you start PBN-Tk, you can set the default
in defaults.py:

WARNING : entering a data class name in "TRAIN DATA” field, but not pressing "LOAD” can result in
the wrong data class being assumed.

cfg.train_class = ’ds45’

2.4 Additional Data controls
In the Data Section, there are some additional controls.

1. VAR: Over-rides the minvar parameter in model file (See Section 3)
2. AA: Adversarial Attack (See Section 18)

3. cWt: Class weighting (integer). Set to the index of the desired class (1 to nclass). If set to zero, it will
weight all data equally. This is useful for training on data from just one class. See Section 17.

4. Rand, SHFT: These affect random shifts and dither applied to data. For spectrogram data,
SHFT="7,1" applies random time shift in the range [-7, 7], and random frequency shift in the range
[-1,1]. The shifts are non- integer (vernier) shifts using frequency-domain approach. Unchecking Rand
turns off random shift, checking turns it on. With 'Rand’ checked, a Gaussian dither is also applied
to the input data, but only for the Gaussian assumption (i.e. nonlin=0 , see Sections 2.2, 3.1). Pa-
rameter “Rand” also has an effect when displaying re-synthesized data: when “Rand” is selected, a
randomly-selected data batch is used instead of just the first batch.

3 Defining a Network

3.1 The Model File

To define a model with name 'newmodel’, you must create the network definition file 'newmodel.py’. As
examples, you can use 'tutl.py’ as an example of a fully-connected network, and “tut2.py” which is a
convolutional example. The file is a python script that fills in the layer structure with the following fields:

REQUIRED FIELDS:

1. type: string, ’conv’ or ’fc’ or ’dbn’

2. nchan_out: integer, number of neurons (columns in weight matrix for fc layers) : or number of kernels
(for conv layers)

3. nonlin: Two-dimensional tuple of integers that specifies the input and output activations of the layer.
Valid ’output’ activation are:

0 = none (linear), 1 = Sigmoid,
5 = TED (similar to sigmoid), 6 = softmax
8 = softplus, 9 = Relu

10 = T-Gauss (similar to softplus),

Only activations 0, 5, and 10 are recommended. The input activation must be the same as the output
activation of the previous layer. This will be tested when loading a model and an error will be printed
if not right. For the first layer, the input activation will be automatically set to the data activation
(nonlin) that is loaded from the data file as explained in Section 2.2.

REQUIRED FIELDS FOR CONV LAYERS:

1. filt_row, filt_col : Integers. The filter kernel size , if spectrogram: (time, freq)
2. border_mode : String.

e ’valid’ : no border assumption, kernel stays within data rectangle, produces output maps smaller
than input maps.

e ’half’ : border half the size of kernel, output map same size as input data (before downsampling).
Filter kernel sizes must be odd numbers!

More on setting up a convolution layer is given in Section 14.

3. pooling : Tuple of integers of length two. Downsampling factors. If spectrogram: (time, freq). For
'valid’ border mode, data size (rows/cols) minus the filter size (rows/cols) must be divisible by the
downsampling (rows/cols). For example, for MNIST data (28,28), with (16,16) kernels, the difference
is (12,12). Therefore pooling of (3,3),(2,2), (4,4),(6,6), (6,2), etc... are allowed. For "half’ border mode,
any pooling can be used, but it is recommended that the input data size be divisible by pooling.

It is necessary for PBN or DPBN training that each layer has a significant dimension reduction with
respect to the previous layer. Suggested is a factor of 1.5 reduction at least in each layer. Layers
where output dimension and input dimension are the same (1:1 layers) are also allowed. Total output
dimension gets printed when the model is loaded. More on setting up a convolution layer is given in
Section 14.

OPTIONAL FIELDS:

1. input_dropout_fac : Dropout factor applied to input of layer (if this is first layer, lyrs[0], then this
will be applied to visible data). This has effect for DNN and for PBN (when 'use dropout’ is checked)

2. partition_size : Controls partitioning (see Section 10.5)

3. minvar : This parameter is used when adding random dither and as a variance floor when estimating
variance. When not specified, value comes from global minvar parameter (see Section 2.4)

3.2 Model File Example

?

The following code segment is from “tutl.py” :

nl_in = cfg.nonlin_in

if nl_in==0:
nl=10
else:

nl = nl_in
nl_out = nl

cfg.lyrs[0] .type = ’fc’
cfg.lyrs[0] .minvar = 0.0
cfg.lyrs[0] .nchan_out = 32
cfg.lyrs[0] .nonlin = (nl_in,nl)

cfg.lyrs[1] .type = ’fc’
cfg.lyrs[1] .nchan_out = 16
cfg.lyrs[1] .nonlin = (nl,nl)
cfg.lyrs[1].input_dropout_fac = .0

cfg.lyrs[2] .type = ’fc’
cfg.lyrs[2] .nchan_out = 3
cfg.lyrs[2] .nonlin = (nl,nl_out)

Here, we see that the input activation for the first layer is set to the global variable “cfg.nonlin_in”, which
is filled in when data is loaded. The output activations are all set to the same value as the input activation,
except if the input activation is 0 (linear), then they are set to 10 (TG).

3.3 Loading, Saving, and Modifying a Network Model

To load a model, enter the model name, then press "LOAD” in the Model Section. Model parameters (bias
and weights) are loaded if the files exist. Each layer is stored in a different file with names

[newmodel] _[data set]_lyrl.mat, [newmodel] _[data set]_lyr2.mat,
Example:
tst2_ds81_lyrl.mat

Layer numbers begin with zero (0,1,2,...) except when determining filenames, then they start with 1. If you
want PBN-Tk to initialize a layer, make sure to delete the file before pressing "LOAD”. If files exist that
used a different network configuration, they will cause errors. Delete the files.

The network layer sizes, activation functions, and dropout factors will be displayed in the Network
Parameter Table. The output activation function ’nonlin’ and the dropout factor of each layer can be
modified. If the checkbox ’Update’ is un-checked, then the parameters of that layer will remain unchanged
while training. The checkbox UMS affects synthesis (Section 10.2) The ”Dropout” field allows you to over-
ride the input dropout parameter in the network definition script (Section 3.1). The ’Activn’ parameter is
the output activation of the layer, and over-rides the output nonlin parameter set in the model file (Section
3.1). The input activation of the next layer will be set to this by default. The network can be temporarily
shortened by putting a space ” ” in the ” Activn” field to disable a layer. Modifications will not take effect
until you press ”APPLY”. These modifications cannot be saved. If you want to change them permanently,
make the changes to the model function [model-name].py

The data weights (or kernels if CONV) can be seen by pressing ”Show” in the Weights Section. The layer
can be selected using 'LYR’ entry box. Layers start at 0.

Model parameters can be saved by pressing ”SAVE” in the Model Section, or when training saved after
each epoch when the ”SAVE” checkbox on the top of the PBN-Tk window is on.

To avoid having to input model name, etc, every time you start PBN-Tk, you can set the default in
defaults.py:

cfg.prefix = "cdbn45"

If you want to start with fresh (random weights), just delete all the model parameter files. For example,

$ rm tutl_ds414243_lyr*.mat

4 General Parameters

These controls are located in the General Parameters Section. Note: any parameter shown in red background
color will require re-compilation to take effect.

General Parameters:

10.

11.

12.
13.
14.
15.
16.

. LVAL: Label signal value, only used in classifier mode.

. BS: batchsize. This and other parameters shown in red will require re- compiling when changed. When

changing BS, you need to re-load the data, the model, and re-compile. Note that any changes to the
model parameters need to be saved before re-loading!

WARNING : When training, the training data size (number of training samples) should be divisible
by the batch size. If this is not possible, use a batch size slightly greater than a fraction of the data
size. For example, if there are 1038 training samples, and you want a batch size near 100, use BS=104.
Do not use a batch size greater than any of the data partitions (i.e. training, validation, test), or an
error may occur.

. MTHD : Optimization method: ’adam’, 'nest’ (Nesterov), 'mom’ (Momentum), or ’sgd’ (stochastic

gradient descent without smoothing). Shown in red because when changing it, you will need to re-
compile.

. ’'r.bias’: Reconstruction bias. Reconstruction bias is normally not used except in RBMs. Checking

this box allows estimating a reconstruction bias for other models (AEC). See Section 15 for more
information.

. 'r.wts’: Reconstruction weights. Reconstruction weights are normally shared with analysis weights.

Checking this box allows estimating a separate set of reconstruction weights for AEC. See Section 15
for more information.

. fwd.s2’: Forward ’s2’. parameter 's2’ is the scale or variance parameter that affects the input to a

layer. Checking this box (default) allows using ’s2’ scaling in the forward direction. See Section 15 for
more information.

AMIN: Factor added to diagonal of the solution matrix before inversion, needed only for training PBN
or DPBN, or synthesizing with these.

. VERB: Verbosity. When greater than 0, prints more things out.

. STDV : Standard deviation for denoising autoencoder (works only for input nonlin=0).

DECAY: Decay factor applied for each batch for layer weight and bias. Use 1.0, 0.9999, etc. Applied
each batch.

L2.REG: L2 regularization factor. Has similar effect like DECAY. Use about le-5 for training DNN,
use as much as 0.02 for training PBN.

L.RATE: Learning rate, suggest le-3 for DNN, le-4 to le-5 for PBN.

SAVE: Check this to save model parameters after each epoch.

PLT : (checkbox) Check this for plotting displays when running "FWD” | ”SYN” and other methods.
QUIT: Exit PBN-Tk.

Refresh: Reload some python modules if they have been changed in the background , also clears plot
history (if 'PLT” checked).

5 Forward Section

5.1 Using the forward network

The forward function implements the feed-forward network. It does not train the network, but just calculates
the output of all the hidden variables given the data input. It can also plot hidden variables and network
output and compute classifcation results and save data to files. Controls are located in the Forward Section.
To compile the network forward algorithm, press the ”FWD” button. To evaluate data using the feed-forward
network, press the ”GO” button. The radio buttons on the left select which data is used: ”train”, ”valid”,
"test” , or ”AA” data (see Section 18). If the "PLT” checkbox is checked (top right of window), then an
intensity image of hidden variables of each layer will be plotted. For the last layer, the sigmoid or softmax
can be applied before rendering by selecting the radio buttons. Or, the GMM classifier is plotted if “gmm”
is selected. (Section 12).

5.2 Classifier function

If the last layer is fully connected and it has an output dimension equal to the number of classes (nclass in
Section 2.2), then the classification mode will be automatically enabled. It is necessary also that the ’tch’
variable is included in the data (Section 2.2). In classifier mode, running the FWD function will print out
the classification results on the selected data partition.

A classification result is also possible using a GMM classifier applied to output layer. The result of the
‘emm’ classifier will be displayed and/or printed of radio button 'gmm’ is selected. See Section 12 for more
about using GMM. If the loaded network is a DBN, the DBN classifier results will be printed and/or plotted
(See Section 8.4).

6 Auto-encoder (AEC)

6.1 General

Controls for AEC are located in the AEC Section. To train an auto-encoder, press the ”AEC” button once to
compile. Then, enable training by checking the ”TRN” checkbox. Stop training by un-checking the " TRN”
checkbox. Hidden variables can be seen using the "FWD?” button with PLT checked (see Sec. 5). To view
re-synthesized visible data, check the ”PLT” check box in the General Parameters Section, then press ”SYN”
button in the ” AEC” section. This displays the first 10 samples of a batch of data. The number of samples
to display can be changes using the “n” field in the PBN Synth Section.

The “EVAL” button will evaluate the AEC using the data partition selected in the Forward Section
(train, valid, test, AA), on the data sets specified in the “EVAL DATA” field in the Data Section (comma
separated list). Mean square reconstruction error will be printed. By checking the “SAVE” checkbox in the
General Parameters Section, evaluation results will be saved to files.

The “DEC” button runs just the decoder network on hidden variables read from an external file “zin.mat”,
which must be of shape batchsize-by-dim, where dim is the network output dimension.

6.2 Variational Auto-encoder (VAE)

To compile a beta variational auto-encoder (beta-VAE), enter a beta value greater than zero in the “VAE”
field, then re-compile by pressing “AEC”. If zero, a standard AEC will result. For § = 1, a standard VAE
will be compiled, and for 5 > 1, it will be a beta-VAE.

6.3 Denoising Auto-encoder

To create a denoising autoencoder, enter noise standard deviation into the “STDV” field in the general
parameters section. This feature works only if the input nonlin = 0 (Gaussian).

6.4 Reconstruction Bias and Weights

The controls “r.bias” and “r.wts” in the General Parameters Section allows separate reconstruction bias and
weights for the AEC and some other models. The PBN-Tk does not normally use a separate reconstruction
bias parameter, nor does it use a separate reconstruction weight matrix. For reconstruction, it just uses
the transpose of the analysis weights. This is called “tied” weights. When using tied weights (“r.wts”
not checked), it is a good idea to enable training of the “s2” parameters. To do this, check “upd.s2” and
“upd.s2in” in the PBN section, then compile AEC. Then, when training AEC, the “s2” parameters will
change. For a beter explanation, see Section 15.

6.5 Classifying Autoencoder

For classifier networks (See section 5.2), the last layer is not used for autoencoding. In this case, you can
enter a constant in the “XE” field in the PBN Section. This will add cross-entropy classifier cost function to
the training, and create an autoencoder /classifier.

7 Deep Neural Network (DNN) Classifier

To train a DNN, you first need data and a network that is compatible with DNN. Data requirements: For a
classification experiment, the data file must have nclass > 1 and include the ’tch’ variable (see Section 2.2).
To see validation or testing results, the variables ’Xv’,’tchv’ , ’X2’,’tch2’ must be included, respectively.
The last layer must be fully connected with an output dimension (See “nchan_out” in Section 3.1) equal to
the number of data classes (See “nclass” in Section 2.2). The output nonlinearity of the last layer does not
matter, it will be set to Softmax.

To train the network as a classifier using cross-entropy cost function, press the ”DNN” button once to
compile the function. Then, enable training by checking the ”TRN” checkbox. Stop training by un-checking
the ”TRN” checkbox again. Data dropout regularization is specified for each layer in the model file (see
Section 3.1), and can be temporarily over-ridden in the Network Parameter Table. You must press APPLY
for the changes to take effect, but you do not need to re-compile. Classifier results and hidden variables can
be seen using the "FWD” button (see Sec 5 above).

To use 'max pooling’ instead of straight down-sampling in convolutional layers, check the 'maxp’ checkbox
in the DNN section. The DNN and FWD functions must be re-compiled after changing this. It is sometimes
useful to train some of the layers and leave other layers unchanged. This is done by unchecking ” Update”
for some layers. After changing this click APPLY, then re-compile. You will get better DNN performance
with MAX-Pooling. Max pooling is not compatible with any other models so uncheck “maxp” before using
PBN, AEC, or any other algorithms.

Different types of regularization are available to create better models. For weight decay, set “DECAY”
to a value like 0.999 while training. When using lots of decay, you will need a large learning rate, such as
le-3. Instead of decay, you can use L2 regularization by setting “L2.REG” to a value like 1le-5. If you want
to use dropout regularzation, specify the input dropout probability in network parameter table, then press
“APPLY”. You can also set them permanently in the model defintion file (See “input_dropout_fac” in Section
3.1).

For better DNN initialization, it is recommended to start with a stacked RBM, and/or UPDN;, although
it is also fine to start with random weights. To get random weights, just delete the model files as explained
in Section 3.1.

8 Restricted Boltzmann machine (RBM)

8.1 Training an RBM

RBM controls are located in the RBM section. To train an RBM, select the layer number (starting at 0) in
the "LYR” field. To train, press "TRN”. The algorithm will stop after ”EP” epochs. To clear the compiled
functions, press the "RBM” button, then the RBMs will be re-compiled the next time "TRN” is pressed.
Normally, deterministic sampling is used by the RBM, replacing stochastic sampling by the distribution
mean, which corresponds to the activation function chosen. Stochastic sampling will be used if the 'rnd’
checkbox is checked. If the “Wts” checkbox is unchecked, the weights will not be updated, only the bias will
be changed. This is useful during initialization. For stochastic sampling, check the rnd checkbox. Activation
functions and sampling distributions are: The “NK” field controls the number of Gibbs iterations. It should
be set to 1 except when training a DBN (See Section 8.4).

nonlin# Act. Fn. Sampling Distribution

0 linear Gaussian

1 sigmoid Binary (Bernoulli)

5 TED Truncated Exponential
10 TG Truncated Gaussian

8.2 Stacked RBM

To train a stacked RBM, keep increasing "LYR” and re-training . A network trained as a stacked RBM can
reconstruct visible data similar to an AEC. To re-synthesize visible data from a stacked RBM, first compile
the autoencoder (AEC) with only the layers you want to use. You can disable layers by entering a space in
the Activation field in the Network parameter Table, then pressing APPLY. After compiling the AEC, use the
”SYN” button in the AEC section to re-synthesite data. Note that reconstruction bias is not generally used
in PBN-Tk. A bias variable is only defined for the forward path. Using a reconstruction bias is unnecessary
because the effect can be achieved using an extra column in the weight matrix. A reconstruction bias is only
used for the deep belief network (DBN) top layer. However, using a reconstruction bias can be forced by
checking the “r.bias” checkbox in the General Parameters Section.

8.3 RBM with MAX-Pooling (MXP).

To create an RBM using max-pooling (with pooling positional information used in the forward path is stored
for data reconstruction), use the TRN button in the MXP part of the RBM Section, which operates like the
normal "TRN” button. To re-synthesize visible data from a stacked RBM with max-pooling, use the ?SYN”
button in the MXP part of the RBM Section.

8.4 Deep Belief Network (DBN)

A DBN is a stacked RBM where the data labels are injected into the data of the last (top) layer. Training
a DBN estimates a joint probability distribution (Gibbs distribution) between data and labels, and can be
used to classify data [Hinton 2006]. To train a DBN, first train all the layers not including the top (last)
layer as a stacked RBM (Section 8.2). The last layer must be of type “dbn” (See section 3.1). The DBN
layer is trained exactly like an RBM layer, except there is the additional control NK which sets the number
of Gibbs iterations in the top layer. When the last layer is a DBN, then the DBN classifier will be evaluated
when the forward function is run (See Section 5.2).

When a non-zero value is entered in the “XE” field in the PBN Section, a cross-entropy classifier cost
based on the free-energy DBN classifier is added to the cost function for training (multiplied by this constant).
To use this feature, put a non-zero value in the “XE” field and re-compile the RBM (by pressing “RBM”
once, then training). Once compiled with a non-zero value in the “XE” field, you can change the XE value
without re-compiling. This feature can produce much better classifer performance.

10

To synthesize random data from a DBN, use the “DBN-SYN” button in the RBM Section. This will
initialize the top layer with random numbers, then apply NK Gibbs iterations to the top layer, then re-
construct visible data. The procedure to train a DBN is: train the stacked RBM layer by layer using RBM,
then train the entire network using UPDN (Section 9), then finally train the top layer DBN using NK=4.
When the “dpbn” checkbox is checked, data will be synthesized using the DPBN.

Training a DBN top-layer using the RBM Section trains just the top layer. You can also train the entire
deep belief network using UPDN (Section 9).

9 Up-Down Algorithm (UPDN)

Several layers of stacked RBMs and DBNs can be fine-tuned with the Up-Down algorithm [1]. The UPDN
algorithm makes an excellent initial set of parameters for PBN and DPBN. Controls are in the UPDN Section.
To train using up-down, press "UPDN” once to compile the function. Then, enable training by checking
the ”TRN” checkbox. Stop training by un-checking the " TRN” checkbox. The visible data reconstruction
error is printed each iteration. Use SYN in the AEC Section to test reconstruction. Normally, deterministic
sampling is used unless the “rnd” checkbox is set.

When the top layer is a DBN, some of the controls in the RBM Section affect the top layer. These include
the number of Gibbs iteration set by the “NK” field, and the “rnd” checkbox. For example, if you want
deterministic iterations in all layers except the top layer, and you want stochastic iterations in the top layer,
then uncheck the “rnd” checkbox in the UPDN Section, and check the “rnd” checkbox in the RBM section.
For more information about DBNs, see Section 8.4.

When a non-zero value is entered in the “XE” field in the PBN Section, a cross-entropy classifier cost
based on the free-energy DBN classifier of the top layer is added to the cost function for training (multiplied
by this constant). This trains the entire network in order to improve the free-energy classifier result of the
top layer! To use this feature, put a non-zero value in the “XE” field and re-compile UPDN. Once compiled
with a non-zero value in the “XE” field, you can change the XE value without re-compiling. This feature
can produce much better classifer performance.

If the last layer is a classification layer (See Section 5.2), then this layer will not be trained as part of the
UPDN algorithm, but instead as a classifier. The “XE” value in the PBN Section controls the amount of
cross entropy added to the cost function.

By checking the “upd.s2” and “upd.s2in” check boxes in the PBN Section, the scale factor “s2” can be
trained. However, when “upd.s2” is trained with the UPDN algorithm, you must disable “fwd.s2”. Networks
trained with “fwd.s2” in one state are not compatible with networks trained in the other state. See Section
15.

10 Projected belief network (PBIN)

10.1 Compiling and Training a PBN

PBN controls are located in the PBN Section. Before training, you need to compile. Press PBN” once to
compile (takes a long time). Although the PBN will work on randomly-initialized weights, it saves time to
start with good initial parameters obtained using stacked RBM (Section 8.2) or UPDN (Section 9) .

The PBN is based on the SPA (Section 16). Therefore, it is necessary to insure that the SPA is correctly
estimated. This is greatly helped by SPA prediction (Section 10.4). Run the SPA prediction until the initial
SPA error is small (about le-3 if possible). Then, it is ready for PBN training. Enable PBN training by
checking the ”TRN” checkbox. Stop training by un-checking the ” TRN” checkbox. As the PBN trains, make
sure the “e2z2” is small (near machine precision). You can also see the “e2z” value, which is the initial SPA
error provided by SPA prediction. If the “e2z” value is large, repeat the SPA prediction training. Once SPA
prediction is small, it should stay small since SPA prediction is updated as the PBN trains. Gaussian layers
(thise with input nonlin=0) do not use SPA, so the error is fixed and cannot be improved.

11

If there still are problems with SPA error, try increasing “NIT” in the SPA Section, then re-compile.

A PBN can be a classifier at the same time (Section 5.2). Classifier results and hidden variables can be
seen using the "FWD” button (see above).

It is sometimes useful to train some of the layers and leave other layers unchanged. This especially
true near the end of convergence. The likelihood function of a PBN is dominated by the first layers. To
concentrate on the end layers, disable updating the first few layers. This is done by unchecking ” Update”
for some layers. After changing this click APPLY, then re-compile.

Additional PBN controls:

e "upd.s2in” : For data where the input activation (of layer 0) equals 0 or 10 , i.e. Gaussian or
truncated Gaussian, which is specified in model definition script see Section 3.1), you can enable
estimating and updating the input variance (otherwise s2 =1). See Section 15 for more information on
the “s2” parameter.

e "upd.s2/v” : Same as above, for remaining layers.

e "dropout” : Enables ”partial dropout” for the layers with non-zero dropout parameter. This feature
is obsolete and may not work.

e ”"XE” : For classification experiments, adds categorical cross-entropy (times the factor "XE”) to the
PBN cost function. Only has an effect for classification experiments. This can be used together with
or as alternative to using ”C”. For more information, see Section 5.2.

e ”(C” : This factor controls a class-depenent prior output density and specifies how much discriminative
influence is used in PBN training. This is an alternative to using "XE”. Only has an effect for
classification experiments. For more information, see Section 5.2.

As the PBN trains, various quantities are printed out. The total log-likelihood (J) is the main quantity,
usually a large negative number, than must increase (become less negative or more positive). The change
in each epoch (del) is also printed. The Saddle-point errors (e2z, e2z2) are also printed. Make sure these
are OK (See Section 16). The variance parameter (s2) of each layer is printed (See 15). Train until J stops
increasing. Check the derivatives if there are problems (Section 10.3). Non-increasing J can be caused by
too-high learning rate, too high L2 regularization, too much DECAY, too high SPA error, or bad initial
weights. The best way to initialize a PBN is with stacked RBM (section 8), followed by UPDN (section 9).
For better parameters, use some DECAY (example DECAY=0.9999) or L2.REG (example: L2.REG= 0.05).

10.2 PBN Synthesis

Controls are located in the PBN Synthesis Section. To compile the PBN synthesis functions, press ”"SYN”. To
re-synthesize visible data after it has passed through the network, press ”GO”. The field "LYR” determines
the last layer to be used. The output of this layer will be used to start reconstruction (layers start at 0). For
example, with LYR=0, the visible data will be re-constructed after passing only through first layer. In the
trivial case where LYR= -1, the reconstructed visible data will equal the visible data itself. The parameter
“n” determines the number of samples to reconstruct for display (when PLT checkbox is set on the top right
of PBN-Tk window).

Random synthesis. If the 'rnd’ checkbox is selected, synthesis will start with randomly-generated hidden
variables. The type of random distribution will be selected to match the output activation function. Gaussian
for nonlin = 0 (Gaussian), uniform for nonlin=>5 (TED) or 1 (Sigmoid), and truncated Gaussian for nonlin=10.
If the ’gmm’ checkbox is selected as well, the GMM (Section 12) will be used to synthesize data. Make sure
a GMM has been created and trained for the selected layer before doing this. Note that the GMM will train
on and synthesize data before any activation function. To synthesize visible data directly from GMM, use
LYR=-1.

12

If the ’sort’ checkbox is selected, syntheic data will be sorted in order of increasing log-likelihood value.
To use this, you need to compile PBN first.

Data is synthesized working backward from the output of layer ‘LYR”. In each layer, you may choose
to use uniform manifold sampling (UMS) by checking the “UMS” ckeckbox for that layer in the Network
Parameter table.

10.3 PBN and DPBN Derivatives

This is controlled by the Derivative Section. To test the calculation of derivatives, select the layer you want to
test (use "LYR” in PBN Synthesis Section), and press ”PBN” or "DPBN”. The number of tests is specified
by the epoch count ’EP’ in the RBM section. At first, it is recommended to use just 10 samples. The type
of derivative is selected by the radio buttons "W” is for weight matrix, b is for bias, ”s2” for variance. Use
"L.RATE” (General Parameters Section) to adjust the ”delta” of the numerical derivative. Check "PLT’
checkbox if you want to display the results. The "TRN’ function is a simplified PBN OR DPBN training
(uses just one batch). If BS is set to the entire training data size, it will create a simplified gradient training
algorithm. The number of iteration (epochs) is set by ’EP” in the RBM Section.

10.4 Saddle-Point (SP) prediction training

These controls are in the SPA Section. In the background, training the PBN or DPBN requires computing
the saddle point, which is an iterative algorithm, This algorithm needs an initial SP estimate (normally just
0). It is more efficient to obtain an initial estimate of the saddle point using a simple neural network. These
initial SP neural networks are trained automatically when either PBN of DPBN are trained, but can be
separately trained using this function. The number of iterations in the SP estimation (not the initial SP
neural networks) is controlled by 'NIT’. The 'HIST’ value determines how many SP iterations are analyzed
for computing derivatives for PBN and DPBN. After changing either of these, you must re-compile.
To use SP training, click 'SP’ to compile, then "TRN’ to start and stop training.

10.5 PBN Partitions

These controls are in the Partition Section. The PBN-TK has the ability to reserve partitions (of the neurons)
in each layer for use in generative or discriminative function. The partition sizes can be set in the network
definition file (see Section 2.0). This is an advanced topic. Normally, set Part. off.

10.6 PBN Classifier

The PBN-Tk supports training a network both as a PBN and as a classifier at the same time. If the
network output dimension equals the number of classes 'nclass’, classifier mode is automatically enabled. To
add discriminative influence to the training, use either cross-entropy ('XE’) (suggest value of 1000) or 'C’
(suggest value 2).

11 Deterministic projected belief network (DPBN)

These controls are in the DPBN Section. The deterministic projected belief network (DPBN) is a set of
stacked deterministic PBN layers. It can be used to reconstruct visible data from hidden variables deep in
the network and trained as a type of auto-encoder. You can control the depth of the DPBN by selecting the
layer number “LYR” (use 0 for a 1-layer network, 1 for a 2-layer network, etc..)

To train a DPBN, press "DPBN” to compile, the check ”TRAIN” to start training, or to stop training.

The DPBN, like the PBN;, is based on the SPA (Section 16). Therefore, it is necessary to insure that the
SPA is correctly estimated. This is greatly helped by SPA prediction (Section 10.4). Run the SPA prediction
until the initial SPA error is small (about le-3 if possible).

13

The DPBN is far more sensitive to initialization than the PBN. Any network, even a network with random
weights can be trained as a PBN. But a DPBN is different. It suffers from failed samples. A failed sample
occurs when the saddle point cannot be found. This can only occur in the DPBN or in PBN Synthesis, if
the feature value presented to the SPA algorithm is not a derived from a sample at the input of the layer.
In DPBN and in PBN Synthesis, the data propagates from the end of the network, back to the visible data.
Therefore, at each layer there is the possibility of SPA failure. Luckily, this can almost always be brought to
zero (success probability to 1.0) through training.

As the DPBN trains, the toolkit prints out “frac”, the fraction of successful sampling. This should be
1.000. The “trick” of training a DPBN is to get the “frac” value up to 1.000. Then, training will be easy.
Tricks to get “frac” value higher include (a) start with random weights, but with very small values (by scaling
weights in each layer by 0.1 - see Section 13.3), or (b) pre-train using stacked RBM (8), or (c) first train the
network as a PBN (Section 10).

As the DPBN trains, it prints out the SPA error “e2z2”, which should be small (near machine precision).
If there are problems with SPA error, try SPA prediction training, or try increasing “NIT” in the SPA Section,
then recompile. Once SPA prediction error is small, it should stay small since SPA prediction is updated as
the DPBN trains.

The PBN-Tk supports training a network both as a DPBN and as a classifier at the same time. First, the
network output dimension must equal the number of classes 'nclass’. Then, classifier mode is automatically
enabled by PBN-Tk. To add discriminative influence to the DPBN training, use XE’ in the PBN Section
(suggest value of 100). The EVAL button evaluates the data partition selected in the Forward Section, and
may display or save results according to the “PLT” and “SAVE” buttons in the General Parameters Section.
The DEC button will use the DPBN to decode (reconstruct) hidden variable data stored in the file “zin.mat”,
which must be of shape batchsize-by-dim, where dim is the network output dimension.

12 Gaussian Mixture Model (GMM)

These controls are in the GMM Section. PBN-Tk has the capability to create a GMM to estimate the
distribution of the network hidden variables. To use the GMM, first set the layer in the LYR field (layers
start at 0). The GMM will train on the output of this layer (actually, the GMM trains on the output of
the linear transformation before bias and activation function). Use LYR=-1 to train the GMM on visible
data. Next, select training data checkbox in the Forward section, and then ’GO’. This will create and save
the training data for the GMM. Next, set the number of GMM components "M’ and press 'GMM’ to create
the GMM parameters, then "TRN’ to train the GMM. Keep pressing "TRN’ until the log-likelihood stops
increasing.

The field "MIN-S’ refers to the minimum standard deviation. The square of this value is added to the
diagonal of the covariance matrixces to prevent ill-conditioning.

GMM classier. If the number of classes ('nclass’ in Section 2.2) is greater than 1, then the GMM can
work as a classifier. A separate GMM will be trainined on each class data. To use the GMM in a classifier,
select ’gmm’ checkbox in the '"FWD’ output activation section section. When GO’ in the Forward Section
is pressed, the GMM likelihood classifier output will be shown and classification error printed.

The GMM can also be used to synthesize hidden variables, for PBN data synthesis (Section 10.2) If LYR
is set to (blank), the GMM will train and synthesize visible data directly.

13 Weights Section

This section allows simple operations on the weight and bias parameetrs of a layer. First select the layer
number in the “LYR” field (layers start at 0).

14

13.1 Nrm: normalizing a layer

Press “Nrm” to normalize the columns of the weight matrix and adjust bias to produce zero-mean, constant
variance hidden variables at the input to the activation function. May only work for dense (FC) layers. Note
that you can always normalize that last layer of a DPBN using Nrm since it has no effect on re-synthesis.

13.2 Show: viewing weights
Press “Show” to plot the weights.

13.3 Scale: scaling weights

Enter a scale factor in the “Fac” field, then press “Scale”. This scales the network layer weights and bias
vectors by this factor.

13.4 PCA: initializing weights
Press the “PCA” button to initialize the weights using principle component analysis (PCA).

13.5 Zro: zeroing weights

Press the “Zro” button to set the bias of the layer so as to produce a zero-mean output.

13.6 setting s2: setting variance parameter

This manually sets the “s2” parameter to the desired value. Enter the value, then press “Set”. The “s2”
parameter is explained in Section 15.

14 Setting up Convolution
A convolutional layer is specified in the model file using the following required variables:

cfg.lyrs[0] .type = ’conv’

cfg.lyrs[0] .filt_row = 8 # in time

cfg.lyrs[0] .filt_col = 8 # in freq

cfg.lyrs[0] .pooling = (3,3) # row, col

cfg.lyrs[0] .nchan_out = 9

cfg.lyrs[0] .border_mode=’valid’ # ’valid’ or ’half’
cfg.lyrs[0] .nonlin = (nl_in,nl)

The kernel size is specified by “filt_row” and “filt_col”. These correspond to the time and frequency dimensions
for spectrograms, assuming the data (in MATLAB) is reshaped from a 3-dimensional data matrix of size
X(1:nfreq,1:ntime,1:nsamp), which in the Python world is of dimension X[0:nsamp][0:ntime][0:nfreq]. The
pooling variable specifies the down-sampling rates (it is not MAX-pooling unless the “maxp” checkbox is
checked for DNNs) for the time and frequency dimensions. Variable “nchan_out” specifies the number of
kernels (and corresponding number of output feature maps). The “border_mode” variable can be either
“valid” or “half” and specify how the edges of the input maps are treated, and how large the output maps
will be.

15

14.1 Border mode “half”

The parameter ”border_mode” defines the zero-padding used in convolution. For “half” border mode, the
data is surrounded with a border of zeros before convolving. The width of the border is (K-1)/2, where K
is the kernel width. This applies separately to each of the two dimensions. By doing this, the convolution
output has the same size as the input. This will be illustrated below for a 1-dimensional convolution with
a kernel of length K=5 convolving with data of length N=6. For border_mode="half’, K must be odd. Let

"D” represent a data value, and 'k’ a kernel value, and ”.” be zeros. There is a border of (K-1)/2 = 2 zeros.
inputs: 123456
DDDDDD
output 1: k k k k k
output 2 kkkkk
output 3 kkkkk
output 4: kkkkk
output b5: kkkkk
output 6 kkkkk

In the example above, each output is a scalar computed by correlation (multiplying together and summing)
the samples “D” and filter values “k”. You see there are exactly as many outputs (6) as inputs. That is the
idea behind ’half’ border mode preserving the feature map size.

When pooling is considered, it reduces the number of outputs. When pooling (down-sampling) 'p’ is
considered, we keep every p-th output. In this case, For example, pooling (down-sampling) factor of 2 gives
just 3 outputs:

inputs: 123456
.DDDDDD.

output 1: k k k k k

output 2: kkkkk

output 3: kkkkk

14.2 Border mode ‘“valid”

With ’valid’ border mode, there is no zeros-padding, resulting in a smaller convolution output. Consider the
case with N=6 and K=4 :

inputs: 123456
DDDDDD
output 1: kkkk
output 2: kkkk
output 3: kkkk

There are just 3 outputs. In general, n_.out = N-K+41. When pooling “p=2" is considered:

inputs: 123456
DDDDDD

output 1: kkkk

output 2: kk kk

16

As you see above, the last output reaches exactly to the end of the data. This is necessary for good
reconstruction and only happens if (N-K) is divisible by p. In this case, N-K=4, which is divisible by p=2.
The PBN-Tk will print an error of this is not right.

15 The “s2” Parameter and Tied vs. Untied Weights

Every activation function is associated with a scale factor, called “s2”, and written mathematically as o2.

Suppose y = f(z) is an activation function (such as Sigmoid). In the PBN-Tk, this is always implemented
as follows:

y=f(z;0%) = of (ox).

The factor o, which is the square root of o2 is applied twice: once at the input of the activation function,
multiplying x, and once at the output of the activation function, multiplying y. For the linear activation
(nonlin=0), this simplifies to

y = f(z;0°%) = oz.

Activation functions are applied in the forward direction (analysis) and in the backward direction (recon-
struction) whenever activation functions are applied. For the PBN, o2 has a statistical interpretation, but
in simpler models such as autoencoder (AEC) or deep neural networks (DNN) or forward network (FWD),
it just acts as a scale factor.

Why is a scale factor needed? Suppose the input to the layer is dimension N and the output is dimension
M. The M output hidden variables are calculated using

hj=f (Z Wi jo; + bj> :

=1

which is written in vector notation as

h=/(Wx+b).

Matrix W is size N x M and bias vector b is dimension M x 1. To reconstruct x, the reconstruction network
would use

x = g(Ah+a),

where g() is the reconstruction activation function (maybe different from f()), and A is size N x M
reconstruction weights and reconstruction bias vector a is dimension N x 1. The forward activation of one
layer is always the same as the reconstruction activation of the next (down-stream) layer. This is how analysis
and reconstruction works without a scale factor “s2”.

In the PBN-Tk, we advocate using the same weight matrix in analysis and reconstruction, and in addition,
do not advocate using a reconstruction bias. Therefore, we reconstruct using just

x =¢g(Wh).

A reconstruction bias vector is not really needed. It carries information about how to reconstruct the data,
but this information is not present in the hidden variables. We could just as well add vector a as a new
column to matrix W. Then, it would be used for reconstruction, but also for analysis. A similar argument
can be made for using the same weight matrix for analysis and reconstruction.

The only problem that can occur when using the same weight matrix for analysis and reconstruction
happens when the input data is very large or very small in value. To handle this, it is necessary to use a
scale factor in the reconstruction path. In the PBN-Tk, the analysis and reconstruction steps including scale
factor are:

h=oyf (W (oox) +b), x=019(W(oi1h)),

17

where o9 is square root of the “s2” parameters of next layer, and where o1 is square root of the “s2”
parameters of current layer. Note that the square root of the “s2” parameter is applied twice: before the
activation function, and after. For the linear activation, f(x;0?) = o2, the scalng is by o2 Notice also that
o1 is only used for reconstruction, and o2 is only used at the output of the layer. Therefore, if x has very high
amplitudes in comparison with h, this is accounted for by a large o;. In the PBN, o2 has an interpretation
as the layer input variance. For the last layer, there is no “next layer”, and o9 is assumed to be 1.

One must be careful when allowing o2 of an intermediate layer to change during training. This is because
of 0% changes, then the next time the forward algorithm is run, a different scale factor will be used, changing
the values of the hidden variables at the input to the layer. It is therefore recommended not to check “upd.s2”
while training an RBM of an intermediate layer. The input layer does not have this problem, so “upd.s2in”
can always be checked.

If it is absolutely necessary to update o2 of an intermediate layer, then uncheck the “fwd.s2” button and
recompile. Then, o2 will always be assumed to equal 1 in the forward direction, and will only affect the
reconstruction calculation. This is useful, for example for training the top-layer RBM in a DBN. But, be sure
that 02 = 1 for all the other intermediate layers. The “s2” parameter can be manually reset in the Weights
Section (Section 13). The input layer (layer 0) can always have o # 1.

Also, if it is desired to use a separate reconstruction weights, check the “r.wts” checkbox (and recompile).
Also, if it is desired to use a reconstruction bias, check the “r.bias” checkbox (and recompile).

16 Saddle-Point Prediction and Estimation for PBN and DPBN

Saddle-Point (SP) estimation is central to PBN and DPBN algorithms. Let x be an N x 1 layer input vector.
When the N x M weight matrix W is multiplied by x, an M x 1 feature z results:

7z = W'x.

It is assumed that M < N, so that z has smaller dimension than x (the layer reduces the dimension). Vector
z is the output of the linear transformation of one network layer, before we have applied a bias and activation
function. Now suppose that x is not known but we know z, and we’d like to reconstruct x. The SP provides
an “optimal” way to do this assuming that x is a random vector from some distribution.

We assume that x is a vector of length N, written x = [x1,z2...xy], where z; are drawn independently
from a distribution x; ~ p(z;a;) based on parameters «;. This is the assumed sampling distribution for the
layer input. In PBN-Tk, we assume either Gaussian, truncated Gaussian (TG), or truncated exponential
(TED). The sampling parameter « is also a vector of length N, o = [av1, o . .. ay]. The sampling distribution
has a mean that depends on the parmeter given by

Aa) =E{p(z;a)} .

This is also known as the activation function corresponding to the given sampling distribution. Assuming
that x was generated this way, the optimal (expected mean) estimate of x is given by

x = A(Wh),
where h is the saddle point. The saddle point must solve the following formula:
W'A(Wh) = z.

Since W’'x = z, x must be a good estimate of x because z = W’x. Finding the saddle point is done by a
Newton-Raphson iteration to find h by minimizing the error

|z — W/ X\(Wh)|]2.

18

When training the PBN or DPBN, the saddle point error, denoted by e2z2 is printed. It should be very
small, ideally near machine precision, le — 30 for double precision and le — 15 for single precision (the error
is relative to ||z||?). If it is too large, you can increase the number of iterations (“NIT” in the SPA Section).

To speed up the Newton-Raphson iteration, an initial estimate of h is made using an auziliary matrix A
that is the same shape as W:

h=A'Az.

This auxiliary matrix is trained using the SP training (Section 10.4). This matrix is stored as parameter
Aa in the parameter files. This matrix is also fine-tuned automatically as the PBN/DPBN trains. When
training the PBN, the initial saddle point error (based on initial estimate of h), denoted by e2z is printed.
This should be around 1le — 2 or better. If not, try to run the SP training (Section 10.4). However, as long as
e2z?2 is small enough, it is not critical. To speed up the algorithm, you can decrease the number of iterations
(“NIT” in the SPA Section).

17 Class-dependent PBN Classifier (PBN-C)

The PBN-Tk implements class-dependent PBN classifier. To use this mode, first train a PBN separately on
each data class by setting the data class using the class weighting field “cWt” in the Data Section. This
can be changed without re-compiling PBN. This is set to the class number (1 through nclass) that you want
to train. If set to zero (default), the PBN trains on all classes. Whenever “cWt” ; 0, the names of the
parameter files that store the network parameters are inserted with “.cX_”, where “X” is the class number.
Finally, to create a classifier experiment, press “EVAL” in the PBN-C Section.

18 Adversarial Attack (AA)

19 Data sets

A number of data sets are provided for use with PBN-Tk to supply some simple problems for learning
purposes. These are based on the MNIST data set [2] which is composed of 60000 training samples of
the handwritten characters “0” through “9”. We have selected just three characters, “3”, “8”, and “9”.
In some cases, we have down-sampled the data 2:1 to 14x14 images, and have used only 500 samples of
each character. The full-size (28x28) data is also available. To demonstrate the use of different data value
ranges, which greatly influences the PBN, we have transformed the data, which normally has pixel values
that reside in the range [0,1] to “gaussian” range [—oo, o], the “truncated gaussian” (TG) range, [0, oo], and
the “truncated exponential” (TED) range, which is in [0,1] line the original data, but has some dither. Some
data sets have all three characters, and some have just one. All have 500 training samples per character.
The various data sets are listed below:

Characters | Data Size | Gaussian Range | TG Range | TED Range
“3” 28x28 ds81 ds91 ds71
“8” 28x28 ds82 ds92 ds72
“9” 28x28 ds83 ds93 ds73
“3,8,9” 28x28 ds818283 ds919293 ds717273
“3” 14x14 ds21 ds31 ds41
“8” 14x14 ds22 ds32 ds42
“9” 14x14 ds23 ds33 ds43
“3,8,9” 14x14 ds212223 ds313233 ds414243

19

References

[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” in Neural
Computation 2006, 2006.

[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, pp. 2278-2324, Nov 1998.

20

