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ABSTRACT

Combining generative and discriminative classifiers has the

potential to attain large performance improvements because

they operate in fundamentally different ways, and tend to

make independent errors. However this potential is diffi-

cult to realize because generative classifiers tend to perform

poorly. In this paper, we create a generative classifier using

a projected belief network (PBN) in conjunction with dis-

criminative alignment (DA) that rivals a CNN and achieves

significant performance improvements when combined. New

classification experiments using marine mammal vocaliza-

tions are shown in which the error rate is cut in half by

combining with a conventional CNN.

1. INTRODUCTION

1.1. Motivation of PBN-DA and Paper Contributions

Because generative (GEN) and discriminative (DISC) clas-

sifiers operate in fundamentally different ways, they tend to

make independent errors and offer the potential to obtain

greatly improved performance when combined. However,

despite the advantages of GEN classifiers (data synthesis,

robustness, detecting out-of-set events), they tend to perform

poorly, making this potential difficult to achieve. A projected

belief network (PBN) is a single network that can act as both

a GEN and DISC classifier at the same time, and in conjunc-

tion with discriminative alignment (DA) allows the best of

both GEN and DISC approaches to be realized. In this paper,

we present new experimental results using PBN with DA

(PBN-DA) in combination with a CNN for classfying marine

mammal calls, cutting the error rate in half. We also provide

new arguments and motivations for PBN and DA including

new visualization experiments to illustrate DA.

1.2. Challenges in Designing Generative Classifiers

Creating a GEN classifer that rivals a DISC one is a ma-

jor challenge. Model fitting is limited by the dimensional-

ity curse, whereby model complexity and data requirements

This work was supported jointly by the Office of Naval Research Global

and the Defense Advanced Research Projects Agency under Research Grant

- N62909-21-1-2024

necessary for accurate fitting increase exponentially with data

dimension [1]. However data size and model complexity are

limited for practical reasons, forcing one to discard informa-

tion in order to limit model complexity. Unfortunately, GEN

classifiers tend to keep information that describes the data, but

discard discriminative information.

Let x be the input data, and y ∈ {y1,y2 . . .} be the class

labels. Consider the following two ways to construct GEN

classifiers: The joint approach first estimates p(x,y), then

calculates p(y|x) using Bayes rule, whereas the class-specific

approach separately estimates the class-conditional densities

p(x|y1), p(x|y2), . . ..
The class-specific approach has disadvantages: sepa-

rately estimating each class distribution is computationally

expensive and introduces imbalances due to separate ran-

dom initialization and different tradeoffs in model overfit-

ting/underfitting, causing classification errors. In contrast,

the joint approach estimates p(x,y) at once, eliminating er-

rors caused by imbalances. An example joint approach is the

deep belief network (DBN) [2], which at the time had state

of the art performance. The universal background model

(UBM) is another attempt to reduce imbalances in speaker

classification by starting with a single model trained on all

the data, then adapting it for each class [3].

But, the joint approach also has disadvantages: it cannot

be easily extended to new classes, and it is just one “expert”,

whereas the class-specific approach is a team of experts that

can model each class with more care and depth, so can be

much more selective. For example, the convolutional kernels

of a network trained separately on each class can work as ba-

sis functions to represent the data the corresponding class.

1.3. Benefit and Main Idea of PBN-DA

Using PBN-DA, one can create a better class-specific GEN

classifier by reducing the effect of model imbalances and re-

taining discriminative information [4–6]. In DA, the shifting

of the decision boundaries due to model imbalance is reduced

by forcing the likelihood function (LF) to have a high slope

in the directions orthogonal to the decision boundaries, so

that model imbalances have less influence (see visualization

in Section 3.2). This training also persuades the generative

model to retain discriminative information.



To achieve DA, a single network is trained with a joint

cost function consisting of (a) a generative LF trained on just

one data class, and (b) a DISC classifier cost (i.e. cross-

entropy) trained to discriminate the given class from all other

classes. For a single network to have such a joint cost func-

tion, it must operate in both the forward and backward direc-

tion, (a two-directional network). The forward direction op-

erates as a standard feed-forward classifier network and the

backward direction operates as a stochastic generative net-

work with a tractable LF. We seek a two-directional network

with the exact inverse property : initial variables passed back-

ward through the generative path should produce input data

that re-creates the same initial variables when passed forward.

This property results in a tighter connection between the two

directions, insuring that the decision boundaries of the classi-

fier affect the shape of the generative likelihood function. The

projected belief network (PBN) is a two-directional network

with all these properties [5, 7–10].

A bank of PBNs is a class-specific GEN classifier type (as

defined in Section 1.2). Each PBN is trained to act as a gen-

erative model for one class, and at the same time as classifier

to discriminate between the given class and all other classes.

This makes a given PBN an “expert” on just one class, know-

ing not only what describes the given class, but also what dis-

tinguishes it from the other classes.

1.4. Prior Work

Existing two-directional networks include restricted Boltz-

mann machine (RBM), constructed using back-to-back per-

ceptron layers. The same network parameters are used in

both directions [11]. Multi-layer stacked RBMs and can be

jointly trained using the up-down algorithm [2]. However

the RBM does not have a tractable LF and does not have

the exact inverse property. The same can be said of auto-

encoders constructed with tied reconstruction and analysis

weights [12]. Normalizing flows (NF) [13], and the exten-

sion to dimension-changing networks called SurVAE [14] are

two-directional networks with exact inverse property, but are

largely a re-invention of probability density function (PDF)

projection [15], the basis of PBN, which came over 20 years

earlier [16, 17].

2. REVIEW OF PDF PROJECTION AND PBN

We provide now a short review of PBN and its theoretical

basis in PDF projection, which is covered in depth in ex-

isting work [16, 18–20]. Consider a fixed and differentiable

dimension-reducing transformation, z = T (x), where x ∈
X ⊆ R

N , and z ∈ Z ⊆ R
M , where M < N . We assume fur-

thermore that the matrix of partial derivatives Di,j =
[

∂zi
∂xj

]

has full rank. Assuming a known or assumed feature distri-

bution g(z), one can construct a PDF on the input data with

support X given by

G(x) =
p0,x(x)

p0,x(z)
g(z), z = T (x), (1)

where p0,x(x) is a prior distribution and p0,x(z) is its map-

ping through T (x) 1. Note that (1) is a function of only x

since z is deterministically determined from x. It can be

shown [16] that G(x) is a PDF (integrates to 1) and is a

member of the set of PDFs that map to g(z) through T (x).
If p0,x(x) is selected for maximum entropy (MaxEnt), then

G(x) is unique for a given transformation, data range X , and

a given g(z) (where “g” represents the “given” feature distri-

bution) [18, 19]. To train the transformation, one maximizes

the mean of logG(x) over a set of training data, and this re-

sults in a transformation that extracts sufficient statistics and

maximizes information [20]. We say that G(x) is the “pro-

jection” of g(z) back to the input data range X , i.e. a back-

projection. To generate data from G(x) in (1), one draws

a sample z from g(z), then draws a sample x from the set

M(z), where

M(z) = {x ∈ X |T (x) = z}, (2)

probabilistically weighted by the prior distribution p0,x(x),
i.e. we sample from p0,x(x) restricted to M(z).

Chain-rule. For cascaded transformations, we apply the

chain rule by recursively applying (1). Consider a cascade of

two transformations, y = T1(x), and z = T2(y). Applying

(1) to the first transformation, we have G(x) =
p0,x(x)
p0,x(y)

g(y).

Applying to the second, we have G(y) =
p0,y(y)
p0,y(z)

g(z). We

then just substitute G(y) for g(y), resulting in

G(x) =
p0,x(x)

p0,x(y)
G(y) =

p0,x(x)

p0,x(y)

p0,y(y)

p0,y(z)
g(z), (3)

which can be extended to any number of stages. To compute

logG(x), one just accumulates the contibutions of each layer.

Data generation is also cascaded, and is initiated by drawing a

sample z from g(z). When the chain rule is applied to a feed-

forward neural network (FFNN) layer-by-layer, this results in

the projected belief network (PBN) [8].

3. DISCRIMINATIVE ALIGNMENT (DA)

3.1. Cost Function

DA is achieved by training each class-dependent PBN to min-

imize the joint cost function Cm(xi) = αdm(xi) − δ[c(i) −
m] logG(xi), where m is the class index 1 ≤ m ≤ M , G(x)
is the generative LF (3), dm(x) is the classifier cost function

for the binary classification between class m and all other

1In our notation, the argument of the distribution defines its range of sup-

port, and the variable in the subscript defines the original range where the

distribution was defined. Thus, p0,x(z) is a distribution with support on Z ,

but is a mapping of a distribution that was defined on X .



classes joined together, data index i ranges over all the train-

ing data (i.e. data from all M classes), c(i) is the data class

label for data sample i, δ[c−m] is the indicator function equal

to 1 when c = m and zero otherwise, and α is a constant. By

pre-multiplying with δ[c(i) − m], G(xi) is trained on only

data from class m , but dm(xi) is trained on all classes.

3.2. Visualization of DA

To visualize DA, we trained a simple PBN network on two-

dimensional data and two data classes. In Figure 1, on the top

two rows, from left to right, we see data from both classes, an

intensity plot of the PBN LF after training on one class, and

the corresponding likelihood contours. As we would expect,

the LF has a peak at the location of the data on which it was

trained. However, as can be seen by the contour plots, there

is not much selectivity against the other data class.

We then re-trained the two PBNs using DA. In rows 3 and

4 of the figure, we see the results. Now the contour plots

show high selectivity against the other data class (i.e. high

slope in the direction that separates the two data classes). The

contours have been “discriminatively aligned”. Now, when

classifying class 1 versus class 2 using a straight Bayesian

likelihood classifier, the classification results will resemble

the properties of the discriminative classifier.
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Fig. 1. From top to bottom: PBN trained on class 1 (red),

PBN trained on class 2 (blue), PBN trained on class 1 with

DA, PBN trained on class 2 with DA. Left column: input data,

center: LF surface, right: contour lines of LF surface.

3.3. PBN-DA-HMM

PBN-DA-HMM is an extension of PBN-DA, in which a hid-

den Markov model (HMM) is integrated into the PBN [6].

After training a PBN using DA, the network is split and the

HMM is used in place of the second half. The principle can

be understood using the example in Section 2. The HMM

takes the place of G(y) in equation (3), and the second half

of the network is discarded. As a result of the DA training, the

features seen by the HMM carry discriminative information.

4. EXPERIMENTAL RESULTS

4.1. Computational Load and Limitation of PBN

The high computational load of PBN can be mitigated us-

ing proper network design [5], but despite this, increases lin-

early with the number of classes, making PBN only suitable

for modest-sized classification experiments. When there is a

high cost of error, such as in military and public safety appli-

cations, PBN is cost effective since it can drastically reduce

the error rate.

4.2. Past Experiments

PBN with DA (with and without HMM) has been proven

in numerous experiments in comparison to and in combina-

tion with a conventional CNN. Table 1 lists previously pub-

lished results, including results from this paper. The error

reduction factor shows how PBN-DA compares with CNN

in terms of relative number of errors. A reduction factor of

1.0 means equal performance to CNN, in itself very mean-

ingful for the reasons indicated in Section 1.2. A factor less

than 1.0 indicates an improvement over CNN. When a linear

combination of the output statistics is used (PBN-DA+CNN),

an improvement is always seen. In two of the data sets, a

straight class-specific generative PBN classifier (without DA)

was also tested, demonstrating the advantage of DA.

4.3. Acoustic Trends Blue Fin Data Set

4.3.1. Data Description

The Australian Acoustic Trends Blue Fin data set [22] con-

sists of acoustic recordings from various hydrophones, along

with a set of annotations of marine mammal vocalizations that

describe the bounding boxes of each vocalization (start and

end time, as well as start and end frequency). We collected

200 examples of from each of six call types, denoted by “BM-

Ant-A ”, “BM.Ant-B ”, “BM.Ant-Z ”, “Bm.D ”, “Bp-20Hz”,

“Bp-Downsweep”. An example annotation is shown in Fig-

ure 2 from class “Bm-D”. Although we rejected annotations

where the signal of interest was not visible to the eye, the data

set contains many samples that are weak and overlap with in-

terfering noise and calls. A time-window of 3072 samples

at 250 Hz sample rate (12 seconds) was extracted for each

selected annotation. For the current experiments, the time-

series were converted to log-band energy features with the



Reduction Factor

Ref Data Set Class Dim. Samp. HMM PBN PBN-DA PBN-DA+CNN

[4] Subset of Google Keywords 2 900 500 N 1.48 1.17 0.84

[4] Subset of MNIST (handwritten char.) 3 196 500 N 2.2 1.22 0.89

[5] Office Sounds (acoust. events) 6 24318 102 N - 1.0 0.55

[6] Subset of ESC-50 (acoust. events) 8 29952 40 Y - 0.94 0.51

[21] Subset of ESC-50 (acoust. events) 23 29952 40 Y - 1.01 0.51

- Acoustic Trends (marine mammal) 6 960 200 Y - 0.84 0.54

Table 1. PBN-DA experiments. We list the relevant reference, the number of data classes, the data dimension, the number of

training samples per class, if HMM was used, and the error reduction factor with respect to CNN for PBN, PBN-DA , and for

PBN-DA in combination with CNN. The last entry is for current paper in which PBN-DA alone performed better than CNN.

Fig. 2. Example annotation from Acoustic Trends Blue Fin

Data Set of type “Bm-D”. Bounding box derived from expert

annotation.

following parameters: FFT size 384 with 128-sample shift

(2/3 overlap), 40 linear-spaced hanning-weighted frequency

bands, resulting in a 40×24 feature map per event. Extracted

.wav files and feature values for the selected annotations have

been made available online [23].

4.4. Networks

For the PBNs, a 5-layer network was used, consisting of two

convolutional layers, followed by dense layers of 128, 32, and

6 nodes. The first layer had 8 7×13 kernels with 2×4 down-

sampling, resulting in 8 output maps of 12 × 10 (dimensions

always given in time×freq). The second layer had 48 4 × 10
kernels with 2×1 downsampling, resulting in 48 output maps

of 5×1 (dimensions always given in time×freq). Linear acti-

vation was used at the output of the convolutional layers, and

truncated Gaussian (TG) activation function was used at the

output of dense layers. TG is the maximum entropy activation

function for the truncated Gaussian prior in PBNs [7]. For

the benchmark CNN, the same network structure was used,

max-pooling was used instead of downsampling, TG activa-

tion functions were used at the outputs of all layers, and drop-

out regularization was used.

To implement PBN-DA-HMM, we tapped the output of

the second convolutional layer, making a 5× 48 feature map,

where the first dimension was time. We used 4-state HMM,

where each state used a Gaussian mixture (GMM) of 3 com-

ponents. A value of 0.12 was added to the diagonal elements

of the GMM covariance matrices.

4.5. Training

Data was split into four 150/50 random data folds. Six sep-

arate PBNs were trained (one on each data class) using dis-

criminative alignment. For PBN and CNN, we used data ran-

dom augmentation of +/ − 3 samples (max) circular time

shifts and +/− 1 sample (max) frequency shift.

4.6. Results

Results are shown in Figure 3 for PBN-DA (in red) and PBN-

DA-HMM (in blue) as a function of linear combination factor

(when adding the output statistic of the benchmark CNN ),

and averaged over the data folds. Shown is total errors out of

a total of 300 for each data fold. PBN-DA alone performed
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Fig. 3. Results of PBN-DA vs. PBN-DA-HMM in combina-

tion with CNN for Australian Blue Fin data. Shown is number

of errors out of 300 averaged over the four data folds.

well, but not as well as the benchmark CNN, and resulted

in significant error reduction when combined with the CNN.

PBN-DA-HMM performed exceedingly well, better than the

benchmark CNN, and resulted in a very significant 2:1 error

reduction.



Data as well as a software toolkit to implement the exper-

iments has been made available online [24].

5. CONCLUSIONS

In this paper, we have presented new arguments and a visual-

ization experiment that explain why DA improves generative

classifiers. We reviewed past experiments and provided a new

classification experiment using marime mammal calls, show-

ing that in combination with a CNN, PBN-DA-HMM cut the

error rate in half.

6. REFERENCES

[1] V. Vapnik, The Nature of Statistical Learning. Springer,

1999.

[2] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learn-

ing algorithm for deep belief nets,” in Neural Computa-

tion 2006, 2006.

[3] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn,

“Speaker verification using adapted gaussian mixture

models,” Digital Signal Processing, vol. 10, pp. 19–41,

2000.

[4] P. M. Baggenstoss, “Discriminative alignment of pro-

jected belief networks,” IEEE Signal Processing Letters,

Sep 2021.

[5] ——, “Using the projected belief network at high di-

mensions,” Proceedings of EUSIPCO 2022, Belgrade,

2022.

[6] P. M. Baggenstoss and K. Wilkinghoff, “Novel genera-

tive classifier for acoustic events (accepted),” Proceed-

ings of EUSIPCO 2023, Helsinki, 2023.

[7] P. M. Baggenstoss, “A neural network based on first

principles,” in ICASSP 2020, Barcelona (virtual),

Barcelona, Spain, Sep 2020.

[8] ——, “On the duality between belief networks and feed-

forward neural networks,” IEEE Transactions on Neural

Networks and Learning Systems, pp. 1–11, 2018.

[9] ——, “Applications of projected belief networks (pbn),”

in Proceedings of EUSIPCO 2019, La Coruña, Spain,

Sep 2019.

[10] ——, “The projected belief network classifier: both

generative and discriminative,” Proceedings of EU-

SIPCO, Amsterdam, 2020.

[11] M. Welling, M. Rosen-Zvi, and G. Hinton, “Exponen-

tial family harmoniums with an application to informa-

tion retrieval,” Advances in neural information process-

ing systems, 2004.

[12] P. Li and P. Nguyen, “On random deep weight-tied au-

toencoders: Exact asymptotic analysis, phase transi-

tions, and implications to training,” ICLR, 2019.

[13] I. Kobyzev, S. J. D. Prince, and M. A. Brubaker, “Nor-

malizing flows: An introduction and review of cur-

rent methods,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 43, no. 11, pp. 3964–3979, 2021.

[14] D. Nielsen, P. Jaini, E. Hoogeboom, O. Winther, and

M. Welling, “Survae flows: Surjections to bridge the gap

between vaes and flows,” in NIPS 2020 (Virtual), 2020.

[15] P. M. Baggenstoss and F. Govaers, “A comparison of

PDF projection with normalizing flows and SurVAE,”

arXiv, 2023.

[16] P. M. Baggenstoss, “The PDF projection theorem and

the class-specific method,” IEEE Trans Signal Process-

ing, pp. 672–685, March 2003.

[17] ——, “A theoretically optimum approach to classifica-

tion using class-specific features.” Proceedings of ICPR,

Barcelona, 2000.

[18] ——, “Beyond moments: Extending the maximum

entropy principle to feature distribution constraints,”

Entropy, vol. 20, no. 9, 2018. [Online]. Available:

http://www.mdpi.com/1099-4300/20/9/650

[19] ——, “Maximum entropy PDF design using feature

density constraints: Applications in signal processing,”

IEEE Trans. Signal Processing, vol. 63, no. 11, Jun.

2015.

[20] P. M. Baggenstoss and S. Kay, “Nonlinear dimension re-

duction by pdf estimation,” IEEE Transactions on Sig-

nal Processing, 2022.

[21] P. M. Baggenstoss, K. Wilkinghof, F. Govaers, and

F. Kurth, “Projected belief networks with discrimina-

tive alignment for acoustic event classification: Rivaling

state of the art cnns,” arXiv, 2024.

[22] B. Miller, K. Stafford, I. Van Opzeeland, D. Harris,
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