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Abstract—This paper addresses the duality between determin-
istic feed-forward neural networks (FF-NNs), and linear Bayesian
networks (LBNs), which are generative stochastic models repre-
senting probability distributions over the visible data based on a
linear function of a set of latent (hidden) variables. The maximum
entropy principle is used to define a unique generative model
corresponding to each FF-NN, called projected belief network
(PBN). The FF-NN exactly recovers the hidden variables of
the dual PBN. The large-◆ asymptotic approximation to the
PBN has the familiar structure of an LBN, with the addition of
an invertible non-linear transformation operating on the latent
variables. It is shown that the exact nature of the PBN depends
on the range of the input (visible) data - details for three cases
of input data range are provided. The likelihood function of the
PBN is straight-forward to calculate, allowing it to be used as a
generative classifier. An example is provided in which a generative
classifier based on the PBN has comparable performance to a
deep belief network in classifying handwritten characters. In
addition, several examples are provided that demonstrate the
duality relationship, for example by training networks from
either side of the duality.

I. INTRODUCTION

A. Motivation and Background

Discriminative and generative networks are two fundamen-

tal but opposing types of networks in common use today.

The classical discriminative network is the feed-forward neu-

ral network (FF-NN), also known as multi-layer perceptron

(MLP). This is a deterministic “inference” process that maps

the input (visible) data to a set of (usually lower-dimension)

intermediate variables. The corresponding generative network

is a Bayesian belief network with directed linear connections,

called linear Bayesian networks (LBN). The LBN is a genera-

tive stochastic models that models the probability distribution

of the visible data based on a set of latent (hidden) variables.

The relationship between the two types of networks has

been exploited for some time. For example, the parameters

of the generative form can be tuned by training an inference

network using back-propagation [1]. Or, the hidden variables

of the generative model can be approximated by an inference

network [2]. The structure of the FF-NN and LBN appear to

be duals. This paper examines the exact nature of this duality.

This duality relationship can be better understood by ex-

amining a restricted Boltzmann machine (RBM), which is

comprised of a set of opposing single-layer LBNs sharing

a common set of weights [3]. Once the RBM is trained,

and the weights of one LBN are used as an FF-NN, they

approximate the hidden variables of the opposing LBN. Thus,

the FF-NN created from one LBN is approximately the dual

network of the opposing LBN. But, this is an approximate

duality forced by special way that the RBM is trained. It would

be interesting to know if the dual network can be derived

without needing to approximate it through specialized training.

Understanding this duality could be helpful in cross-training

(obtain the parameters of one by training the other), applying

the dual networks without needing to explicitly train them,

or developing new types of classifiers. In what follows, the

duality relationship is formalized to find the dual generative

counterpart for any FF-NN. The necessary tools for this task

are found in a method called probability density function

(PDF) projection, and in the principle of maximum entropy,

which together are called maximum entropy PDF projection

(ME-PP) [4]. The dual network of the FF-NN turns out

to be an LBN with weight matrix equal to the transpose

of the FF-NN weight matrix, but with an additional non-

linear operator preceeding the linear operation. This non-linear

operator depends on the input data range.

B. Main Contributions and Paper Outline

The main contributions of this paper are (a) the use of ME-

PP to construct a PBN which is the dual LBN corresponding

to a given FF-NN, (b) the decription of the large-� asymptotic

form of the PBN, which has the structure of an LBN together

with a special invertible function operating on the latent

variables, (c) the use of PBN to construct an auto-encoder

with tied analysis and reconstruction weights, (d) the use

of PBN to construct a generative classifier for handwritten

character recognition, and (e) the direct generative training

of a PBN by maximization of the likelihood function. Other

constributions include various experiments demonstrating the

duality relationship between PBN and FF-NN.

Section II is devoted to laying the mathematical foundation

needed for PBN including review of FF-NNs and LBNs (Sec-

tions II-A and II-B), PDF projection (Section II-C), maximum

entropy PDF projection (Section II-D), and uniform manifold



sampling (Section II-E). The PBn is described in Section III

which covers the general form of the PBN (Section III-A), the

specifics for unbounded data (Section III-B), positive-valued

data (Section III-C), and for data in ❬✵❀ ✶❪ (Section III-D).

Various arrangements of the PBN are presented in Sections

III-F through III-H and potential applications of the PBN are

described in Section III-I. Experimental results are divided

into illustrative experiments (Section IV) and classification

experiments (Section V).

II. MATHEMATICAL BACKGROUND

A. Feed-Forward Neural Network (FF-NN)

Figure 1 shows one layer of a feed-forward neural network

(FF-NN), which is a purely deterministic mapping, transform-

ing vector ① ✷ ❘◆ to ❢ ✷ ❘▼ , where it is assumed that

� ❁ ✁ . This paper is concerned only with network layers

where � ❁ ✁ . The intermediate feature vector ③ is generated

from ① using the linear transformation

③ ❂ ❆
✂
①✿ (1)

The components ✄✐ of the output variable ❢ are then generated

by adding the bias vector ❝ then applying a non-linear “acti-

vation” function ✄✭☎✮, which forces ✄✐ in the range ❬✵❀ ✶❪. In

matrix form, ❢ ❂ ✄✭③ ✰ ❝✮✿ Examples of activation functions

are the sigmoid function

✄✭✆✮ ❂
✶

✶ ✰ ❡✝✞
❀ (2)

or the “TED” non-linearity

✄✭✆✮ ❂
❡✞

❡✞ ✟ ✶
✟

✶

✆
✿ (3)

which is derived from the truncated exponential distribution

(TED), as shown in Section II-B. On the bottom of the figure,
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Fig. 1. One layer of a feed-forward network of perceptrons.

the optional energy statistic ❡ ❂ t✭①✮ is shown - it will be

explained in Section II-D.

B. Linear Bayesian Networks (LBN)

Figure 2 shows one layer of a linear Bayesian network

(LBN). The figure shows how the “visible” data ① ❂

❬✆✠❀ ✆✡ ✿ ✿ ✿ ✆◆❪ is generated conditioned on the “hidden” ran-

dom variables ❤ ❂ ❬☛✠❀ ☛✡ ✿ ✿ ✿ ☛▼❪, where it is assumed that

� ❁ ✁ . In order to generate ①, one must first create the inter-

mediate parameter ☞ ❂ ❬✌✐❀ ✿ ✿ ✿ ✌◆❪❀ by affine transformation

☞ ❂ ❲❤ ✰ ❜✿ Then, for each ✶ ✔ ✍ ✔ ✁ , ✆✐ is generated

according to the element distribution ♣✭✆✐✎ ✌✐✮. Conditioned

on ❤, the elements of ① are independent.
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Fig. 2. One layer of a linear Bayesian network (LBN).

The sigmoid (Bernoulli) distribution is used for discrete-

valued ✆✐, taking values of ✵ or ✶,

P✭✆✐ ❂ ✶✎ ✌✐✮ ❂
✶

✶ ✰ ❡✝✏✑
✿ (4)

An example of a continuous-valued element distribution often

used in the literature is the Gaussian

♣✭✆✐✎ ✌✐❀ ✛
✡
✐ ✮ ❂ ✭✒✙✛

✡
✐ ✮
✝✠✓✡

✕✖✗

✚

✟
✭✆✐ ✟ ✌✐✮

✡

✒✛✡✐

✘

✿ (5)

For continuous data ✆✐ limited to the range ❬✵❀ ✶❪, it is more

natural to use the truncated exponential distribution (TED)

given by

♣✭✆✐✎ ✌✐✮ ❂

✜
✌✐

❡✏✑ ✟ ✶

✢

❡
✏✑✞✑ ❀ ✵ ✔ ✆✐ ✔ ✶✿ (6)

The mean of this density is

✣✭✌✮ ❂
❡✏

❡✏ ✟ ✶
✟

✶

✌
✿ (7)

It is a characteristic of the duality between LBN and FF-

NN, that the expected value of the element distributions,

notably (4) and (7) correspond to activation functions, (2)

and (3) respectively. In Figure 3, the TED non-linearity (3)

is compared with the sigmoid function. It will be shown later

that the TED element distribution and TED non-linearity have

a special theoretical role in PBNs.

C. PDF Projection

Let ③ ❂ ❚✭①✮ be some deterministic mapping from ❳ ✷

❘◆ to ❩ ✷ ❘▼ , where � ❁ ✁ and where ❳ and ❩ are the

allowable ranges of random variables ① and ③, respectively. Let

♣✭①✎❍✤✮ be some known reference distribution with support

on ❳ , and let ♣✭③✎ ❍✤✮ be the corresponding distribution with

full support (non-zero everywhere) on ❩ imposed by mapping



Fig. 3. Solid line: sigmoid function ❢✭①✮. Dotted line: TED non-linearity
✕✭✸①✮. Upper: function, Lower: derivative.

❚ . The projected probability density function (PDF) is given

by

●�✁❀❍✵✂ ❚✂ ❣✄③☎✆ ❂
♣�✁❀❍✵✆

♣�✝❀❍✵✆
✞�✝✆✂ ✝ ❂ ❚ �✁✆✂ (8)

where ✞�✝✆ is any distribution on ❩ . It can be shown [5] that

(8) is a PDF (integrates to 1 on ❳ ), and is consistent with

✞�✝✆, meaning that samples drawn from ●�✁❀❍✵✂ ❚✂ ❣✄③☎✆ and

mapped to ❩ using ❚ will have exactly distribution ✞�✝✆. The

PDF ✞�✝✆ is said to be “projected” from ❩ back to ❳ .

An approximation to an arbitrary distribution ♣�✁❀❍✆ can

be obtained by PDF projection, if ✞�✝✆ is replaced by the

apropriate feature PDF estimate, denoted by ❫♣�✝❀❍✆. Then

●�✁❀❍✵✂ ❚✂ ✟✠✄③✡☛☎✆ will be a reasonable estimate of ♣�✁❀❍✆.

The PDF estimate can become exact under the condition of

statistical sufficiency (See [6], p. 674. Sec. II.A, or [7], Sec.

II.B) .

A generative model has two functions. First, it is a likeli-

hood function, which is written down in equation (8). Second,

it is a data generation recipe. Generation from (8) is a two-

stage process [6] : (a) generate a sample of ✞�✝✆, denoted by

✝☞, then (b) generate a sample ✁ on the level set ▼�✝☞✂ ❚ ✆

(usually a manifold) defined by

▼�✝
☞
✂ ❚ ✆ ❂ ✌✁ ✿ ❚ �✁✆ ❂ ✝

☞
✂ ✁ ✷ ❳✍✂ (9)

with relative probability proportional to ♣�✁❀❍✵✆. This second

step, drawing a sample from the manifold, can be interpreted

as drawing from the a posteriori distribution ♣�✁❥✝❀❍✵✆ ❂
✠✄✎✡☛✏☎
✠✄③✡☛✏☎

✂ which is not a proper distribution, having all its

probability mass on the set ▼�✝☞✂ ❚ ✆ which, has zero volume

[4], [5]. But, if the deterministic relationship of ✁ and ✝

is ignored, PDF projection has the form of Bayes rule:

●�✁❀❍✵✂ ❚✂ ❣✄③☎✆ ❂ ♣�✁❥✝❀❍✵✆✞�✝✆✑

D. Maximum Entropy PDF Projection

While PDF projection finds a PDF on ❳ consistent with

✞�✝✆, it requires specifying an arbitrary reference distribution

❍✵. To find a unique PDF, one can seek the reference distri-

bution that maximizes the entropy of the resulting projected

PDF. Maximizing the entropy is a well established principle

in PDF estimation [8], [5]. That allows the PDF estimate to

express not only the available knowledge about ✁, but also the

ignorance. The entropy of a distribution ♣�✁✆ is given by

◗✌♣✍ ❂ ✒

✓

✎
❧♦✔ ♣�✁✆ ♣�✁✆ ❞✁✑

The entropy is maximized subject to constraints imposed by

the available “knowledge” about ♣. For example, if the mean

and variance are known, the Gaussian distribution has the

highest entropy among all distributions with the given mean

and variance [9]. In recent papers [4], [5], it is explained how

to select ❍✵ in (8) so that ●�✁❀❍✵✂ ❚✂ ❣✄③☎✆ has the highest

possible entropy. Let the ❍✵ that maximizes the entropy be

denoted by ❍☞
✵ :

❍
☞
✵ ❂ ❛r✔♠❛✖

☛✏
◗✌●�✁❀❍✵✂ ❚✂ ❣✄③☎✆✍ ✂

and the highest-entropy PDF be denoted by

●
☞
�✁❀ ❚✂ ❣✄③☎✆ ❂ ●�✁❀❍

☞
✵ ✂ ❚✂ ❣✄③☎✆✑

This results in a unique generative model corresponding to the

given transformation ❚ and the given feature distribution ✞�✝✆.

The identity of ❍☞
✵ and the conditions under which it can

be found depend on the range of ✁, denoted by ❳ , but they do

not depend on ✞�✝✆. Depending on ❳ , the selection of ❍✵ for

maximum entropy may require appending the feature ✝ with

an energy statistic [5], denoted by ❡ ❂ t�✁✆. The complete

transformation is then ❚ �✁✆ ❂ ❬✝✂ ❡❪✑ An energy statistic is a

scalar feature measuring information about the size of ✁, for

example a norm ❦✁❦. Important is that there exists a function

✗ such that ✗�❚ �✁✆✆ ❂ ❦✁❦✂ for some valid norm ❦✁❦✑ The

type of reference hypothesis and norm depends on ❳ . Three

cases will be discussed in Sections III-B through III-D.

E. UMS: Generating from the Maximum Entropy Projected

PDF ●☞�✁❀ ❚✂ ❣✄③☎✆

Interestingly, despite the dependence of ❍☞
✵ on ❳ , the

maximum entropy (ME) sampling procedure for ●☞�✁❀ ❚✂ ❣✄③☎✆

is always the same: (a) generate a sample ✝☞ from ✞�✝✆,

then (b) generate a sample ✁ on the level set ▼�✝☞✂ ❚ ✆

with uniform probability. In other words, choose ✁ randomly

from ▼�✝☞✂ ❚ ✆, insuring that no member of ▼�✝☞✂ ❚ ✆ is

more likely to be chosen that any other. This process is

called uniform manifold sampling (UMS) [4], [5] and is the

mathematical basis of the PBN.

III. PROJECTED BELIEF NETWORK (PBN)

A. Definition and General Form

A PBN arises when ME-PP is applied to a feed-forward

neural network (FF-NN), i.e. by applying (8) and selecting

❍✵ for maximum entropy. The PBN is best understood by first

analyzing the linear transformation alone without any bias or

non-linearity. Consider the linear transformation

✝ ❂ ❚�✁✆ ❂ ❆
✘
✁✂ (10)



where ❆ is assumed to be a full-rank ◆ ✂▼ matrix. The ME

projected PDF is

●
✄
✭①❀ ❚� ♣✁③✮☎ ❂

✆✭①❀ ❍✄
✵ ☎

✆✭✝❀ ❍✄
✵ ☎

❣✭✝☎� (11)

which is the likelihood function of the PBN. The basic PBN is

illustrated in Figure 4 which shows the optional energy statistic

❡ ❂ t✭①☎. The energy statistic is needed so that ❍✵ can be

selected for maximum entropy, but only when the range of ①

can be unbounded (exponential or Gaussian assumption), but

is not needed for data values limited to the interval ❬✞� ✶❪.

Drawing samples from ●✄✭①❀ ❚� ✟✁③✮☎ requires UMS, which

is illustrated in the box on the left side of the figure. The

two sides of the figure are duals, and can be seen as inverse

processes because the low-dimensional variable ✝ (and energy

statistic ❡ if present) is exactly reproduced at the output.
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Fig. 4. Exact form of the most basic type of PBN corresponding to a linear
transformation.

The UMS function on the left of Figure 4 does not have

a recognizeable network structure. But, for large ◆ , UMS

can be closely approximated by an LBN. Figure 5 shows the
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Fig. 5. Type I (inference) form of a PBN (left) and its dual FF-NN (right).
Element distributions, energy statistics, and function ✕✠ ✡ are shown in Table
I. What is inside the dotted box is the asymptotic (large ☛ ) approximation
to UMS.

asymptotic form of Figure 4, which is an LBN, but differs in

two ways from the LBN in Figure 2: it has no explicit bias

term ❜, and at the input, there is a non-linear function

❤ ❂ ✌
☞✍
✎ ✭✝☎ (12)

that operates jointly (not element-wise) on the input variable ✝.

Function ✌☞✍
✎ is the inverse of the function ✝ ❂ ✌✎✭❤☎, which

is defined as the conditional mean ✝ ❂ ✌✎✭❤☎ ❂ ❊✭✝❥❤☎� in

other words the expected value of the output of the network

on the right hand side of Figure 5 conditioned on knowing the

intermediate variable ❤. Looking at Figure 5, one can write

✌✎ as follows:

✌✎✭❤☎ ❂ ❆
✏
✑ ✭❆❤☎ � (13)

where ✑✭✒☎ operates element-wise on the vector ✓ ❂ ❆❤

and is defined as the conditional mean of ✔ given ✒, ✑✭✒☎ ❂

❊✭✔❥✒☎, and is only a function of the element distribution

✆✭✔❀ ✒☎. From this definition of ✌✎✭❤☎, it is clear that the

inverse function ✌☞✍
✎ ✭❤☎ cancels the effect of the network, so

that the expected value of ✝ on the right hand side of Figure 5

will equal the input ✝ on the left hand side. Thus, whereas the

exact PBN of Figure 4 exactly reproduces ✝ at the output, the

asymptotic dual pair in Figure 5 reproduces ✝ in the mean.

The function ✑✭✒☎ for various cases of input data range ❳

are provided in Table I. These cases will be discussed in detail

below. For completeness, the binary case ❇✖ is included,

where ✔✐ can be either 0 or 1.

Range Element Distr. Function Energy Stat.
✗ ✘✠✙✚ ✛✡ ✕✠✛✡ ✜ ✢✠✙✣✛✡ t(x)

❘✤
✥✦✧

★
✩✪✫✩✬✯✷

✷✰✷

✱

✲
✳✴✸✷

✕✠✛✡ ✜ ✛
P✤

✹✺✻ ✙✳✹

✼✤ ✛✽✾✿ ✕✠✛✡ ✜ ❁❃✛
P✤

✹✺✻ ✙✹

❯✤
❄

✾
❅✬❈✻

❉
✽✿✾ ✕✠✛✡ ✜ ❅✬

❅✬❈✻ ❋ ✻
✾ N/A

■✤ ❏✻ ✜ ✻
✻❑❅✩✬ ✕✠✛✡ ✜ ✻

✻❑❅✩✬ N/A

❏▲ ✜ ❁ ❋ ❏✻

TABLE I
ELEMENT DISTRIBUTIONS, ENERGY STATISTICS, AND FUNCTION ✕✠✛✡

FOR EACH CASE OF ✗ . IN ALL CASES, ❖✎✠◗✡ ✜ ❙❱✕✠❙◗✡, WHERE ✕✠❲✡
OPERATES ELEMENT-WISE ON THE ARGUMENT ❲.

B. PBN for ① ❨ ❩✖

The case where ❳ ❂ ❩✖ happens when the data is

not strictly limited to a given range, for example when the

input data is the output of microphones, sensors, or has been

averaged. It could also be, for example, the logarithm of

power spectra, intensity images, or energy data. In a previous

publication (in [5], Section III.B), the case of UMS for the

linear transformation ✝ ❂ ❆✏① for ① ❨ ❩✖ (unconstrained

case) is covered in detail. The main results are now presented.

When the range of ① is unlimited, it is necessary to

append the second-order energy statistic t❭✭①☎ ❂
❫✖

✐❴✍ ✔❭
✐ ❵

So, for example, the feature can be augmented with t❭✭①☎ or

preferably ❧♦❛ t❭✭①☎. For ❳ ❂ ❩✖ , the Gaussian reference

hypothesis will produce maximum entropy:

✆✭①❀ ❍
✄
✵ ☎ ❂

✖❝

✐❴✍

✶
❞

❢❦
❡
☞♠✷♥ q❭ ❂ ✭❢❦☎

☞✖q❭
❡
☞r✷✁s✮q❭❵ (14)



Given a pair t✄✷,③✄, drawing a sample ① using UMS is done

as follows. (a) form the vector ☛ ❂ ❆✭❆✵❆✮
�✶

③✄❀ (b) using

Gramm-Schmidt procedure, form the ortho-normal ◆ ✂✭◆ ✁

▼✮ matrix ❇ spanning the linear subspace orthogonal to ❆,

(c) form the ✭◆ ✁▼✮ ✂ ☎ vector ⑦✉ of independent Gaussian

random variables of mean zero and variance ☎, and (d) let

① ❂ ☛ ✰ ❇✉❀ where ✉ ❂
✆✝♣
❦✆✝❦✞

✟
t✄✷ ✁ ✠☛✠✷✿ Drawing a

sample ① in this way will exactly reproduce the features ③✄,

t✄✷. For more information on computing ●✄✭①✡ ❚❀ ❣☞✌✍✮, see [4]

(Section IV.C, page 2821). For more information on sampling

●✄✭①✡ ❚❀ ❣☞✌✍✮, refer to [5] Section III.B.

For the asymptotic case (large ◆ ), data created by UMS

for a fixed feature ③✄❀ t✄✷ will be approximately Gaussian with

mean ☛ with independent Gaussian noise of variance ✛✷ ❂
☞✎✏✞�❦☛❦✞✍

✑ ✿ It can be seen that if data from this distribution

is reduced to features, it approximately reproduces ③✄❀ t✄✷ . The

entry for ❳ ❂ ❘✑ in Table I shows that ✕✭✒✮ ❂ ✒✿

C. PBN for ① ✓ P✑ (Positive Quadrant)

Let P✑ be the positive quadrant of ❘✑ , where for all ✐,

✔✖ ❃ ✗, but are unlimited in size. This is the case for power

spectra or intensity data. When ❳ ❂ P✑ , it is necessary to

append ③ the first-order energy statistic [5] t✶✭①✮ ❂
✘✑

✖✙✶ ✔✖❀

which can be integrated into matrix ❆. For ① ✓ P✑ , the

exponential reference hypothesis produces highest entropy:

✚✭①✡❍
✄
✜ ✮ ❂

✑❨

✖✙✶

❡
�✢✣ ❂ ❡

�✎✤☞✥✍✿ (15)

In a previous publication (in [5], Section IV), the case of UMS

for the linear transformation ③ ❂ ❆✵① when ① is constrained to

P
✑ is covered in detail. Instead of defining a separate energy

statistic ❡ ❂ t✭①✮, one can insure that it is “contained” in ③,

for example by specifying one column of ❆ to be a constant.

Given a fixed feature ③✄, UMS is implemented by drawing

a sample ① from the set (9), most efficiently accomplished

using “hit and run”, a type of MCMC for uniform sampling

on linear, convex manifolds [10]. The main challenge in com-

puting ●✄✭①✡ ❚❀ ❣☞✌✍✮ is calculating the distribution ✚✭③✡❍✜✮

which can be done using the saddle point approximation (See

[11], page 2244-2246). For more information on computing

●✄✭①✡ ❚❀ ❣☞✌✍✮ , see [4] (Section IV.B, page 2820). For more

information on sampling ●✄✭①✡ ❚❀ ❣☞✌✍✮, refer to [5] Section

IV.

In the asymptotic case (large ◆ ), data ① created by UMS

for a fixed feature ③✄ will have independent elements ✔✖ that

are exponentially distributed

✚✭✔✖✡ ✒✖✮ ❂ ✒✖❡
✦✣✢✣ ❀

with mean ✕✭✒✖✮ ❂ ❊❢✔✖❥✒✖✧ ❂
✶
✦✣

, where ☛ ❂ ❆★❀ and

the vector ★ is the solution to the equation ❆✵✕✭❆★✮ ❂ ③✄❀

where ✕✭✒✮ ❂ ☎✩✒ operates element-wise. If data from this

distribution is reduced to features, it approximately reproduces

③✄. The asymptotic form of UMS is illustrated in Figure 5 with

functions defined in Table I.

D. PBN for ① ✓ ❯✑ (Unit Hypercube)

In this case, ① is limited to the unit hypercube, denoted

by ❳ ❂ ❯✑ , meaning that ✔✖ is in the range ❬✗❀ ☎❪ for all ✐.

This case is most common in a neural network, especially in

hidden layers. For this case, no energy statistic is needed and

the uniform reference hypothesis ✚✭①✡❍✄
✜ ✮ ❂ ☎ will produce

highest entropy [5]. Therefore, (11) simplifies to

●
✄
✭①✡ ❚❀ ❣☞✌✍✮ ❂

☎

✚✭③✡❍✄
✜ ✮

✪✭③✮❀ ③ ❂ ❚✭①✮✿ (16)

The computation of ✚✭③✡❍✄
✜ ✮ is derived in appendix of [7].

In a previous publication (in [5], Section V), the case of

UMS for the linear transformation ③ ❂ ❆✵① when ① is

constrained to the unit hypercube is covered in detail. As

was true for the case of ❳ ❂ P✑ , UMS is most efficiently

accomplished using “hit and run”, a type of MCMC for

uniform sampling on linear, convex manifolds [10], but the

sampling procedure is slightly modified to account for the

added upper bound [5].

For large ◆ , UMS can be shown to be asymptotically the

same as sampling from the multi-variate TED distribution

✚✭①✡ ★✮ ❂

✑❨

✖✙✶

✫
✒✖

❡✦✣ ✁ ☎

✬

❡
✦✣✢✣ ❀ ✗ ✯ ✔✖ ✯ ☎❀ (17)

where ✒✖ ❂
✘✱

♠✙✶ ✲✖✳♠❤♠❀ which can be written (in matrix

notation)

✚✭①❥★✮ ❂ ❈✭☛✮❡
✥✴✸

❀ (18)

where ❈✭✒✮ ❂

✹
✦

✺✻�✶

✼

operates element-wise on a vector.

This distrubution has mean

✽ ❂ ✕✭☛✮✿ (19)

The function ✕✭ ✮ is tabulated in Table I and in this case is the

TED non-linearity (7) applied element-wise. The asymptotic

form of UMS is illustrated in Figure 5. Note that the energy

statistic t is not needed 1.

Solving the equation ★ ❂ ✾�✶❁ ✭③✮ can be accomplished

using the method of [5], Section V.C. This solution is rapid

and is based on a Newton-Raphson iteration to find the ★

that minimizes the square error q ❂ ✠③ ✁ ❆✵✕✭❆★✮✠✷✿ The

algorithm terminates when q is driven to zero. The solution

may not exist, but will always exist if there is at least one

element in the set (9), which will always be the case if ③ was

generated by the forward network.

As an aside, the special non-linear function ★ ❂ ✾�✶❁ ✭③✮

is related to the solution of the saddle point for ✚✭③✡❍✄
✜ ✮ for

❳ ❂ ❯✑ (and also for ❳ ❂ P✑ ). In fact, the hidden variable

★ is the saddle point.

1However, it has been observed that by including the first-order statistic
❄❅❉❋■ into the column space of matrix ❏ often results in a better model.



E. Discussion

The mathematical details for PBNs corresponding to three

input data ranges have been presented in Sections III-B

through III-D. It is interesting that the maximum entropy dual

counterpart of a feed-forward network for a given input data

range ❳ is an LBN with a specific element distribution. In

the case ❳ ❂ ❘◆ , it is the Gaussian distribution. In the

case ❳ ❂ P◆ , it is the exponential distribution. And in

the case ❳ ❂ ❯◆ , it is the TED distribution. This occurs

because as � becomes large, the distribution of UMS tends

toward the maximum entropy distribution under mean (and/or

variance) constraints (See appendix in [5]). Most interesting

is the case of ❳ ❂ ❯◆ because this is the case most

often encountered in neural networks. In linear inference,

one seeks to “infer” the distribution of data that has been

observed through a dimension-reducing transformation. Just

like Gaussian distributions are the most “natural” choice for

unbounded data, the TED distribution is the most natural

choice for continuous-valued data that is limited to the unit

interval [0, 1].

Missing in the discussion is the binary (Bernoulli) type of

network, which is in common use. PDF projection, which is

the basis of the PBN, is not well suited to binary networks be-

cause of the intractability of the distribution of linear functions

of binary random variables, and of sampling from a manifold

within the binary input data space. This does not diminish

the importance of the discussion because the TED distribution

serves as the continuous cousin of the Bernoulli distribution.

Even the energy function of the TED and Bernoulli RBMs are

identical [7].

F. PBN with bias and non-linearity

Most FF-NN networks used in practice, such as in Figure

1, include bias ❝ and non-linearity ❢✭ ✮, These can be easily

added to the PBN, but must be inverted at the input of the PBN,

as illustrated in Figure 6. This form of the PBN is called Type

I (inference form) because it is based on the inference latent

variables ③ or ✁ .

p(    ;    )αx

p(    ;    )αx

p(    ;    )αx

p(    ;    )αx

p(    ;    )αx
x1

x2

x
N

c 1

c M

z 1

z M

f 1

h
1

hM

γ  (z)
−1

A

c 1

c M

f M

f 1

z M

z 1

f(  )

A i,j

f(  )

α

A i,j

f(  )

f(  )
−1

−1

f M

e
Energy

Statistic

DataVisible

Duality

e

UMS: select x uniformly distributed from the set

Type I ("Inference" form) of PBN

Feed Forward Neural Network

(FF−NN)

x : A’ x = z{ , t(   ) = ex }

Fig. 6. Form I (inference form) of PBN including optional bias and
activation functions. The dotted box suggests that the generation of ① can be
accomplished either with UMS (exact form) or with the asymptotic generative
network shown. See Table I for element distributions, energy statistics, and
function ✕✂ ✄ which is needed to construct ✌❆✂❤✄ according to (13).

To apply PDF projection to an FF-NN with bias and

activation function, the transformation is broken into two

parts, ③ ❂ ❚✭☎✮ ❂ ✆✵☎, followed by the invertible 1:1

transformation ❢✐ ❂ ❢✭✝✐ ✰ ✞✐✮. Let the full transformation

be denoted by ✁ ❂ ❚✟ ✭☎✮. Due to the 1:1 transformation, the

distributions of ③ and ✠ are related by ♣✭③✮ ❂ ❥❏✟ ✭③✮❥ ♣✭✁✮,

where ❥❏✟ ✭③✮❥ is the absolute value of the determinant of the

Jacobian matrix ❏✟ ✭③✮ ❂

✡
❅✟☛
❅☞✍

✎

✿ This gives

●
✏
✭☎❀ ❚✟ ✑ ✒✓✔✖✮ ❂

♣✭☎❀❍✏
✗ ✮ ❥❏✟ ✭③✮❥

♣✭③❀❍✏
✗ ✮

♣✭✁✮✿ (20)

Equation (20) defines the exact likelihood function for the

PBN which is the dual of the FF-NN in Figure 1 and on the

right side of Figure 6. It assumes ✁ is a random variable drawn

from the given distribution ♣✭✁✮. To sample from (20), (a) draw

a sample ✁✏ from ♣✭✁✮, (b) convert to ③✏ by inverting the bias

and non-linearity, then (c) draw a sample ☎ uniformly from the

set ▼✭③✏✑ ❚ ✮ defined in (9), where feature ③ would include the

energy statistic ❡, if present. Since the FF-NN on the right side

of Figure 6 is the exact dual of the UMS generative process,

the variable ✁ is exactly reproduced at the output.

G. Linear Bayesian Network (LBN) with bias

Linear Bayesian networks used in practice (Figure 2) have

an explicit bias term ❜. This can be implemented by adding

the bias vector b as a column to matrix A,

✆✘ ❂ ❬✆ ❥ ❜❪

and driving this column with a fixed scalar element ✙✗

appended to vector ✠. This is shown in Figure 7 on the left

side. The addition of this term implies that the added column

should also appear in the dual FF-NN network, producing

an extra output ✝✗. It has been shown, for example, that the

added column is necessary based on sufficiency arguments

when applied to the restricted Boltzmann machine [7]. This is

called the PBN Form II (generative form) because it is based

on the generative latent variable ✠.
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Fig. 7. Type II (generative) form of a PBN with bias term (left) and its dual
FF-NN (right). The bias vector ✚ is appended to the weight matrix ✛ and is
driven by the constant input ✜✢.

H. Multi-layer PBN

A multi-layer PBN is just an application of the chain-rule

known to PDF projection ([6], page 676, Section II.D). A



two-layer PBN is formed recursively when ♣✭❢✮ is replaced

by the projected PDF of the second layer, itself expressed as

(20), with ❢ taking the role of ①. This recursion repeats for an

arbitrary numbers of layers. Consider a 3-layer network. Let

① be the network input, ❢✶ and ❢✷ the outputs of the first two

layers, and ③✸ the output of the linear transformation in the

third layer. The chain rule would be written

●✄�✁❀❣�✂☎☎❂
✆�✁✝❍✞✵☎❥❏✟ �✂✞☎❥

✆�✂✞✝❍
✞
✵☎

✆�✠✞✝❍
✡
✵☎❥❏✟ �✂✡☎❥

✆�✂✡✝❍
✡
✵☎

✆�✠✡✝❍
☛
✵☎

✆�✂☛✝❍
☛
✵☎
❣�✂☛☎☞

where ✌❦
✍ is the hypothesis that layer ✎ input is the uniform

distribution (or whatever the MaxEnt reference hypothesis is

for that layer). Note that the Jacobian is missing in the last

layer - at the output of the network it is prefereble to estimate

the distribution of ③ before the non-linearity. The MaxEnt

property also extends to the chain rule [4], so that ✏✑✭①☞ ❣�✂☎✮

will be the distribution on ❳ with maximum entropy among

all distributions consistent with ✒✭③✮.

Sampling also occurs recursively, starting from the last

layer. Sampling multi-layer PBNs suffers from a flaw: a UMS-

generated sample may not be a “valid” output of the layer

before it. In other words, the manifold (9) may be an empty

set for some values of ③✑. The efficiency (the fraction of UMS-

generated samples that are valid outputs of the previous layer)

can potentially be very low. An LBN does not suffer from this

problem. However, the efficiency of the sampling process is

an increasing function of the likelihood function (20) of the

following layer. Therefore, in PBN design, increasing sam-

pling efficiency goes hand in hand with improved PDF design

(improved feature extraction) of the down-stream layers.

I. Applications

The inference form (Form I, Figures 5 and 6) and generative

form (Form II, Figure 7) of the PBN can be used to find

the dual counterparts of existing LBN or FF-NN, respectively.

Applications of this include

1) Training the FF-NN as a generative model. Examples

are provided in Sections IV-A and V-C.

2) Training the generative PBN by training an FF-NN with

back-propagation (See Section V-B).

3) Approximating the hidden variables of an LBN using

the dual FF-NN.

4) Creating an auto-encoder from an arbitrary weight ma-

trix without the need for a complementary reconstruction

matrix. This is demonstrated in Section IV-C.

IV. ILLUSTRATIVE EXPERIMENTS

A. Training and Sampling a PBN

In this simple example, it is demonstrated that equation (20)

can be used as a likelihood function that can be maximized

to train the weights of the FF-NN as a generative model. It

is also shown that random samples can be generated from

the corresponding generative model. For illustrative putposes,

the dimension was kept very low. A FF-NN with sigmoid

activation function was created with input data dimension is

◆ ✓ ✹ and output feature dimension ▼ ✓ ✔. The input data

range was the unit hypercube ❯✕ . Training data consisted

of 1000 samples of independent Gaussian-distributed samples

with mean ❬✿✻☞ ✿✹☞ ✿✺☞ ✿✺❪, and variance ✿✖✖✖✻✔✺ (care was

taken that there were no samples outside the range ❬✖☞ ✗❪).

The matrix ❆ and constant ❝ were randomly initialized, and a

uniform feature PDF ♣✭❢✮ ✓ ✗ was assumed. Note that since

♣✭①✘✌✑
✍ ✮ ✓ ✗, and ♣✭❢✮ ✓ ✗, (20) reduces to

✏
✑
✭①✘ ❚✙ ☞ ✆�✠☎✮ ✓

✚✛✙ ✭③✮✚

♣✭③✘✌✑
✍ ✮
✿ (21)

The network was trained by maximizing the log-

likelihood averaged over ♥ samples of training data

▲ ✓
✶
✜

P✜
❦❂✶ ❧♦✢✏

✑✭①❦✘ ❚✙ ☞ ✆�✠☎❂✶✮✿ The PDF ♣✭③✘✌✑
✍ ✮ was

computed by the saddle-point approximation (See appendix in

[7]). Maximization of ▲ was accomplished by gradient-based

steepest descent. The gradient ❅
❅✣▲ was calculated in closed

form for all parameters ✤ including elements of ❆ and ❝.

Once ▲ was maximized, ✏✑✭①✘ ❚✙ ☞ ✆�✠☎❂✶✮ was computed

on a grid on a slice through ❳ at ✥✸ ✓ ✿✺, ✥✦ ✓ ✿✺. This

is displayed in Figure 8 on the left side. A contour plot of

✏✑✭①✘ ❚✙ ☞ ✆�✠☎❂✶✮ is plotted on the right side along with some

synthetic data that will be explained below. When evaluated

on 2-D plane in the 4-D space, ✏✑✭①✘ ❚✙ ☞ ✆�✠☎❂✶✮, looks very

much like other types of PDF estimates, such as Gaussian

mixture model (GMM), with probability density concentrated

near the training data.

To test the generation capability of the PBN, 20,000 samples

of synthetic data were generated using the procedure at the

end of Section III-F. Of the 20,000 generated samples, all

were discarded except about 100 samples that were in the

slice ✿✹✽ ✧ ✥✸ ✧ ✿✺✔☞ ✿✹✽ ✧ ✥✦ ✧ ✿✺✔✿ These were plotted

on the right side of Figure 8 (dots). Note that these samples

agree very well with the density contours that were computed

on the slice at ✭✥✸☞ ✥✦✮ ✓ ✭✿✺☞ ✿✺✮✿
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Fig. 8. Visualization of the implied (projected) PDF for a perceptron layer.
Left: intensity plot of PDF slice at ★✩✪✫ ✩✬✯ ✰ ★✱✲✫ ✱✲✯ with samples of
training data (dots). Right, contour plot of PDF slice at ★✩✪✫ ✩✬✯ ✰ ★✱✲✫ ✱✲✯
with samples of synthetic (UMS-generated) data.

B. Validating Asymptotic Duality

In the last example, it was demonstrated that a PBN can be

trained and samples can be drawn that match the theoretical

distribution. In this example, it is demonstrated that the PBN

can be approximated by the asymptotic form illustrated on the

left side of Figure 6, for the case ❳ ✓ ❯✕ . In contrast to the



previous example, it is necessary to use a higher dimension:

◆ ❂ ✶✷✽, ▼ ❂ ✹. A FF-NN (as depicted on the right side of

Figure 6) was created. Matrix ❆ was chosen to be the ◆✂▼

matrix of discrete cosine transform (DCT) basis functions. The

bias vector ❝ was a random ▼ ✂ ✶ vector, and ❢✭ ✮ was the

sigmoid function (2).

Experiments were conducted with a fixed feature vector ③

that was created by first generating a random input vector ①

in the unit hypercube 2, then letting ③ ❂ ❆✵①.

In the first experiment, data was generated by UMS (i.e

the exact form of the PBN), and using the asymptotic PBN,

and the samples were compared. The UMS samples were

generated on the manifold (9) using method of ([5] Section

V.A). To generate samples from the asymptotic PBN, samples

were draw from the conditional TED distribution (18), where

☛ ❂ ❆✌�✁✄ ✭③✮. Figure 9 compares the average of 3000 UMS-

generated samples with the theoretical mean of the conditional

TED distribution, which equals ✕✭☛✮, where ✕✭ ✮ is the TED

mean (7). There is very close agreement.
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Fig. 9. Light dashed line: one random UMS sample of ☎ . Solid red line:
theoretical TED mean (19), Circles: average of 3000 UMS samples.

As an additional comparison of the distributions, Figure

10 shows scatter-plots of ① projected on a randomly-chosen

pair of indexes, both for UMS-generated data (left) and for

the asymptotic TED distribution (right). There is also good

agreement.
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Fig. 10. Left: scatter plot of UMS-generated samples (two randomly-selected
elements). Right: samples generated according to the TED distribution.

The above experiments have compared the distribution of

samples generated by UMS and by the asymptotic TED

distribution. The conditional likelihood functions are now

compared given a fixed value of ③. For the exact form of

2☎ was created by passing data of the form ✆✉, where ✉ is Gaussian,
through the sigmoid function to force it in the range ❬✝❀ ✞❪.

the PBN, with PDF (16), the conditional distribution is just

♣✭①❥③✟❍✠
✡ ✮ ❂

✁
☞✍✎✏✑✒✓ ✔

✖ which can be compared with the

asymptotic approximation (18). This approximation can be

written
✶

♣✭③✟❍✠
✡ ✮

✬ ❈✭☛✮❡
✗✘✙

✖ (22)

where ☛ ❂ ❆✌�✁✄ ✭③✮. In each of 100 trials, random sample ①

was computed as described above, then the log of both sides of

(22) were plotted on the two axes of Figure 11. Although there

is a small bias that increases as ♣✭①✮ is larger, they track very

well. Note that the approximation gets better for increasing ◆

(see appendix in [5]), and the value used in the experiment

was relatively small (◆ ❂ ✶✷✽).
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Fig. 11. Conditional projected PDF compared with conditional TED
distribution (circles). Solid line signifies X=Y.

C. Auto-encoder

In this example, the duality relationship is used in order to

create an auto-encoder with tied analysis and reconstruction

weights. Given an arbitrary FF-NN, as illustrated on the right

side of Figure 6 with sigmoid activation function, the task

is to create an auto-encoder, by following the FF-NN by the

asymptotic form of the PBN, which is the conditional TED

distribution explained in Section IV-B. This approximately

recovers ①. For deterministic reconstruction, the random TED

element distribution (6) is replaced with the TED non-linearity

(3). Note that the non-linearity used in the FF-NN does not

need to be the same as the one used for deterministic recon-

struction - this one needs to match the asymptotic element

distribution - in this case TED.

To demonstrate the idea, an arbitrary 1-layer FF-NN was

created with ▼ ❂ ✶✷ nodes. The columns of the weight

matrix were initialized to the top P singular values obtained

by principal component analysis (PCA) analysis of the training

data from 200 samples of character “8” from the MNIST-389R

corpus (See section V-A). The bias vector ❝ was initialized to

provide zero-mean to the input to the sigmoid non-linearity.

Examples of re-constructed samples are shown in Figure 12.

V. CLASSIFICATION EXPERIMENTS

In this section, a PBN is trained from both sides of the

duality relationship, first as a FF-NN, and then directly as a

generative model, and then used in a classification experiment.



Fig. 12. Examples of reconstructed data from an auto-encoder constructed
from an FF-NN followed by its dual SBN. Top row: original data. Bottom
row: deterministic reconstruction.

A. MNIST Data description

The MNIST OCR data corpus [12] set consists of ten hand-

written digits 0-9 divided into two sub-corpora: the training

sub-corpus with about 6000 training samples of each digit,

and the testing sub-corpus has 10,000 samples, about 1000

testing samples of each digit. In addition to the full MNIST

corpus, a reduced MNIST corpus was created to facilitate

processing-costly experiments. The reduced corpus is called

MNIST-389R and consists of just the digits “3”, “8”, and

“9”. Train and test data was gathered into one pool, then

200 samples per class were randomly chosen for training. The

✷✽✂✷✽ images were also 2:1 down-sampled to ✶✹✂✶✹. In the

classifier experiments on the reduced corpus, the classification

performance was measured in eight independent trials, each

trial using a different random set of 200 training examples per

class, and testing using all the remaining samples (20324).

The MNIST and MNIST-R data is positive-valued in the

range [0,1]. In addition to the original data, “expanded” data

was created by passing the pixel values into the inverse

sigmoid function. Most of the expanded data was in the range

[-10, 10].

Four existing classifiers were used to get a benchmark for

performance on the reduced corpus.

1) The Gaussian mixture model (GMM) was applied di-

rectly to the raw data. Both full covariance matrices

and diagonal covariance matrices were tried, and per-

formance was measured using both expanded and non-

expanded data. In all cases, a “variance floor” was im-

plemented by adding the value ✚�❫✛�✐ to the ✁-th position

of the diagonal of the covariance matrix, where ❫✛�✐ is

the sample variance of feature ✁. The best performance

achieved on non-expanded data was 8.5%, and the best

performance on expanded data was 5.85% with ❞ ❂ ✷

mixture components and ✚ ❂ ✿✽✺.

2) The SVM Light toolbox [13] was used to create a sup-

port vector machine (SVM) classifier. Best performance

was obtained using polynomial kernel which achieved

4.5% with a standard deviation of 0.14%.

3) Deep neural network. The PDNN toolkit [14] was used

to pre-train a deep network using stacked RBMs, then

fine-tune using back-propagation. The network specifi-

cation was “196:196:196:32:3”, which means an input

dimension of 196 (✶✹ ✂ ✶✹), followed by hidden layers

of 196, 196, and 32 units, and ending with an output

layer of three units. The average performance over eight

independent trials was 3.76% with a standard deviation

of 0.37%.

4) Hinton’s deep belief network (DBN), a generative model

based on the restricted Boltzmann machine (RBM) [3]

with one layer of 100 hidden units and a top-layer RBM

with 300 hidden units. The network was trained using

the up-down algorithm [3], then tested using the free

energy approach as described in Hinton’s paper. The

DBN achieved average 3.28% error.

Benchmark performances for MNIST-389R data are tabu-

lated in Table II.

Classifier Expand Error Std. Dev. Conditions

GMM N 8.5% 0.4% ✄ ☎ ✆✝✞, 2 components

GMM Y 5.85% 0.2% ✄ ☎ ✆✝✞, 2 components

SVM N 4.5% 0.14% polynomial kernel

DBN N 3.28% 0.25% 100:300

DNN N 3.76% 0.37% 196:196:196:32:3

PBN/CSFM N 3.4% 0.16% ▼ ☎ ✸✻ Auto-Encoder

PBN/CSFM N 3.2% 0.12% ▼ ☎ ✸✻ Gen-Opt

TABLE II
CLASSIFIER PERFORMANCE ON MNIST-389R.

B. Training a generative model using an auto-encoder FF-

NN.

In this example, a generative classifier based on the PBN is

trained by training the dual FF-NN as an auto-encoder with

back-propagation. In the simplest form of an auto-encoder,

a two-layer FF-NN is constructed with reduced dimension

at the output of the first layer. In the second layer, the

dimension is expanded back to the dimension of the input. The

network is then trained using back-propagation to reconstruct

the visible data at the network output, then the second layer

is discarded. Using the MNIST-389R data with 200 training

samples from each class, a separate class-dependent auto-

encoder was trained on each of the digits “3”, “8”, and “9”

with a hidden layer dimension of ✟ ❂ ✠✡. The weights of

the auto-encoder were randomly initialized.

After the auto-encoder networks were trained, the second

layer and the bias and non-linearities of the first layer were

removed, resulting in the basic form of the PBN, which has

likelihood function (11). Let ③❧ ❂ ❚❧✭①✮, where ☛ ranges

over the classes, be the feature transformation of the network

trained on data from class ☛, and let ❫♣✭③❧❥❍♠✮ be the PDF

estimate of feature ③❧ made using data from class ☞. Let

●✌✭①❀ ❚❧✍ ✎✏✑✒✓✔✕✖✗✮, be the PBN likelihood function created

from the network that was trained on class ☛, but with

output distribution trained on class ☞. A straight class-specific

classifier [15] can be formed as follows

❛r❣✘❛✙
♠

●
✌
✭①❀ ❚♠✍ ✎✏✑✒✖✔✕✖✗✮✍

but this classifier is effectively “putting all eggs in one basket”

because class hypothesis ❍♠ is tested only using feature ③♠.



A better approach is the class-specific feature mixture (CSFM),

which is given by

♣✭①❥❍♠✮ ❂

♥❳

❧�✶

✇❧❀♠●
✄
✭①✁ ❚❧✂ ❫☎✆③✝✞✟✠✡✮✂

where ☛ is the number of classes (☛ ❂ ✸ here), and where
P♥
❧�✶ ✇❧❀♠ ❂ ☞. This type of classifier has been found to have

superior performance compared to a straight class-specific

classifier [16], [17], [5]. A further improvement upon the

CSFM is attained by using an annealed mixture [18], [5], [17]

given by

♣✭①❥❍♠✁❈✮ ❂
☞

❑

✥
♥❳

❧�✶

✇❧❀♠●
✄
✭①✁ ❚❧✂ ❫☎✆③✝✞✟✠✡✮

✶✌✍

✦✍

✂

(23)

where ❈ is a heurisic parameter that functions like the

temperature parameter in the “softmax” function, and where

the constant ❑ is the normalizing constant required to make

the annealed mixture a PDF. This constant can be found by

Monte Carlo integration [5], [18], but in these experiments,

it was ignored, and ❑ ❂ ☞ was used. Values of ❈ that

were used are provided in Table III. Mixture weights of

✇❧❀♠ ❂
✶✰✎ ✏❬❧✑♠❪
✶✰✎ were used, where ✒ is a heurisic parameter

that determines how much ♣✭①❥❍♠✁ ❈✮ “prefers” the network

trained on class ✓ over the networks trained on the other

classes. A straight class-specific classifier results if ✒ ✔✕ ✖.

When estimating ✗♣✭✘❧❥❍♠✮✂ a Gaussian mixture of ❞ mixture

components and covariance floor factor ✚ was used. Parameter

values are provided in Table III.

A maximum likelihood classifier was formed by maximizing

(23) over ✓. Classification performance was measured as

the auto-encoders were trained. The experiment was repeated

8 independent times, each time with a random set of 200

training samples, using all the remaining samples for testing.

In Figure 13, the classification performance is seen as a

function of training iterations3. As the auto-encoder trains, the

mean square error decreases and the classification performance

generally improves. A mean classification performance of

3.4% was achieved after 100 iterations. This performance

improves upon the benchmark GMM performance of 5.85%

and SVM performance of 4.5%, and even surpasses the DNN

performance.

Training Hidden nodes ✙ ✛ ✜ ✢

Auto-enc. 36 .4 100 .02 3

Generative. 36 .5 150 .3 3

TABLE III
CSFM PARAMETERS USED IN THE EXPERIMENTS. ✙ IS THE “VARIANCE

FLOOR” PARAMETER, ✛ IS THE ANNEALING FACTOR, ✜ IS USED TO

COMPUTE THE MIXING WEIGHTS, AND ✢ IS THE NUMBER OF MIXTURE

COMPONENTS FOR THE GMM.

3In each “iteration” 10 steps of steepest descent were performed to
minimize the mean square auto-encoder reconstruction error.
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Fig. 13. Classification performance of auto-encoder-trained network on
MNIST-389R data as a function of training iterations for ▼ ✣ ✤✻ hidden
nodes. Each of the 8 independent trials (dotted) are shown as well as the
overall mean (solid, circles) .

C. Training a generative model directly (Generative Training).

In the last example, the PBN was trained by training its dual,

the FF-NN using back-propagation. Now, the PBN is trained

directly bu maximizing the likelihood function, showing that

it is possible to train the same network from either side of

the duality. The experiment in Section V-B was repeated,

except that back-propagation was replaced by maximizing

the likelihood function as explained in Section IV-A. To

simplify the training, it is temporarily assumed that the output

distribution is uniform ♣✭❢ ✮ ❂ ☞, so that the likelihood function

reduces to (21). After training, the estimated feature PDF is

used, as in Section V-B. Parameters are tabulated in Table III.

Classifier results on MNIST-389R data are shown in Figure

14 for ✧ ❂ ✸✩ hidden nodes as a function of iteration.

As the networks train, the average log-likelihood ▲ generally

increases (▲ was measured using separate testing data) and

the classification error decreases. The direct-trained generative

networks had better performance than the auto-encoder-trained

networks. In fact, a performance of 3.2% is achieved after

40 iterations, significantly improving upon the DNN which

achieved 3.76%, and surpassing the DBN. This suggests using

the more efficient auto-encoder training first, then fine-tuning

with generative training.
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Fig. 14. Classification performance of generative trained network on MNIST-
389R as a function of training iterations for ▼ ✣ ✤✻ hidden nodes. Left:
classification error, right: total log likelihood. Each of the 8 independent trials
(dotted) are shown as well as the overall mean (solid, circles).

The quality of a generative model can be evaluated not only

by its classification error performance, but also by the quality



of the synthetic data it can generate. Samples of character “9”

were randomly selected from the MNIST-389R corpus, which

are shown on the left column of Figure 15. A network as

described in Section IV-C with ▼ ❂ ✶✺ was initialized using

PCA. Reconstructed digits are shown in the center column

of Figure 15. Reconstruction was done again after generative

training (right column of Figure 15). Notice the improved

Fig. 15. Five samples from MNIST-389R, character “9” reconstructed from
15-dimensional feature. Left column: original data. Center column: Recon-
structed from network initialized using PCA. Right column, reconstructed
after generative training.

quality afforded by generative training, such that the UMS-

generated sample looks almost identical to the original data.

D. Performance on the full MNIST data set.

The PBN is now tested as a generative classifier on the

full MNIST data set. To obtain a performance benchmark,

the state of the art classifiers listed in Section V-A were ap-

plied. SVM Light toolbox attained 181 errors (1.81%). Using

PDNN toolkit with network specification “784:500:500:10”

and stacked-RBM pre-training, the DNN attained 200 errors

(2.00%). The performance of Hinton’s deep belief net (DBN)

of 1.25% is taken from published results [3]. In addition, a

deep convolutional neural network (CNN) was tested using

the PDNN toolkit [14]. The first convolutional layer had 20

✺ ✂ ✺ kernels with 2:1 pooling. The second layer used 50

✺ ✂ ✺ kernels with 2:1 pooling. These were followed by a

neural network with 512 hidden units, ending with an output

layer of 10 units. This network achieved 95 errors (0.95%).

Then, the PBN-based CSFM generative model with gen-

erative training described in Section V-C was tried on the

full MNIST data set. A CSFM model was created using

PBNs trained on each class with with ▼ ❂ ✸✷ hidden units.

Separate classifiers for expanded and non-expanded data were

created. Note that for the expanded data, the PBN described in

Section III-B is required, whereas Section III-D is apropriate

for the non-expanded data. The PBN-CSFM attained 1.41%

error on the non-expanded data, and 1.37% on the expanded

data. Interestingly, although the performances are silimar, the

two approaches produce sufficiently independent results that

a linear combination of the two methods is advantageous (see

Figure 16). Best performance of 1.28% was achieved for equal

weighting (linear combination factor = 1). This performance is

on par with state of the art “permutation invariant” state of the

art classifiers (not taking advantage of correlations between

adjacent pixels or distortions), which does not include the

CNN.
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Fig. 16. Linear combination results for combining two CSFMs (designed
for expanded and non-expanded data).

Settings

Classifier Expand Error � ✚ ❈ ✎ ❞

SVM N 1.81% polynomial kernel

DNN N 2.00% 196:500:500:10

DBN N 1.25% 500:500:2000

CNN N 0.95% 20(5x5):50(5x5):512:10

CSFM N 1.41% 32 .25 1000 .13 14

CSFM Y 1.37% 32 .25 500 .015 14

CSFM (comb) N+Y 1.28%

TABLE IV
CLASSIFIER PERFORMANCE ON FULL MNIST CORPUS. FOR A DEFINTION

OF SETTINGS SYMBOLS, SEE TABLE III.

VI. CONCLUSIONS

In this paper, the projected belief network (PBN) was

created by applying maximum entropy PDF projection to a

feed-forward neural network. The exact and asymptotic (large

◆ ) forms of the PBN were described. The asymptotic form

of the PBN is a linear Bayesian network employing a special

non-linear function followed by multiplication by the matrix

❆, which is the same matrix used in the feed-forward network,

followed by random data generation using certain element

distributions. The special non-linear function and the element

distributions depend on the range of the input (visible) data

①. The details of the PBN are described for three cases of

input data range. In the case of data in the unit hypercube,

which is the most common case in neural networks, the

element distributions are the truncated exponential distribution

(TED). This establishes the theoretical importance of TED in

machine learning. The duality relationship between the FF-NN

and the PBN has been validated and demonstrated in several

experiments. For example, it was demonstrated that a PBN-

based classifier can be trained from either side of the duality

- as a FF-NN or as a PBN. On the MNIST corpus, a classifier

based on the PBN achieved state of the art performance for

permutation-invariant classifiers.
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