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ABSTRACT
In this paper we present a statistical model with a non-
symmetric half-plane (NSHP) region of support for two-
dimensional continuous-valued vector fields. It has the sim-
plicity, efficiency, and ease of use of the well-known hid-
den Markov model (HMM) and associated Baum-Welch al-
gorithms for time-series and other one-dimensional prob-
lems. At the same time, it is able to learn textures on a two-
dimensional field. We describe a fast approximate forward
procedure for computation of the joint probability density
function (PDF) of the vector field as well as an approximate
Baum-Welch algorithm for parameter re-estimation. We test
the method using synthetic textures.

1. INTRODUCTION

1.1 Goal

Let si, j be a discrete random variable taking values between
1 andM on a two-dimensional field 1≤ i ≤ N1, 1 ≤ j ≤
N2. Assume that we cannot observesi, j directly but instead
observe aD-dimensional continuous valued random vector
“pixel” xi, j ∈ RD whose probability density function (PDF)
depends on the state at pixeli, j and is denoted byp(xi, j |si, j).
We would like to (1) model the statistical behavior of the
discrete random field (2) estimate the PDFsp(x|s) and (3)
determine the joint PDF of the entire fieldX = {xi, j : 1 ≤
i ≤ N1, 1≤ j ≤ N2 given the model parameters.

1.2 Previous Work

Real-world patterns and textures exhibit complex statistical
dependencies between neighboring pixels. In order to model
these dependencies in a tractable way, we often assert the
Markov property. This property holds that the state of the
system at a given pixel conditioned on the entire field or part
of the field can be expressed in terms of only the states of the
of neighboring pixels. The choice of theneighborhoodhas
a profound affect on the properties of the model [1] [2], [6].
We can classify the models into two subclasses:causaland
non-causal.

In non-causal models, the conditional statistical depen-
dence extends in all directions and the neghborhoodof a pixel
surrounds the pixel itself. Although this is probably a better
representation of real-world processes, the statistical analysis
of such fields requires the mathematics of Gibbs fields and its
associated limitations. Limitations include (1) the necessity
of using iterative methods to generate synthetic fields from
the model, (2) the inability to find a closed-form expression

for the constant of proportionality of the probability distribu-
tions - a necessity for classification, and (3) reliance on en-
ergy “clique” functions which are non-intuitive and indirect
representations of the statistical dependencies.

In causal models, the neighborhood system is one-sided
with statistical dependence expressed only in terms of “past”
data. This allows computation of the joint probability density
function (PDF) of the entire field of vectors in a recursive
manner. Additional advantages are the reliance on direct in-
tuitive conditional dependencies and the ability to synthesize
random fields in one pass. Among causal models the Markov
Mesh is a very tractable model that expresses dependencies
in terms of just two neighboring pixels [4], [5]. The simplic-
ity of the Markov mesh models, however, may limit the use-
fulness of the model [1], [6]. The non-symmetric half-plane
(NSHP) region of support (ROS) consists of four neighbor-
ing pixels and provides the most general causal model [6].

The discussion up to now has assumed thatsi, j are di-
rectly observable. When statistically modelingX, another
layer of complexity is added especially when trying to es-
timate model parameters. In the case of one-dimensional
problems such as in speech recognition, the parameter es-
timation problem is handled very efficiently using the Baum-
Welch algorithm [3]. Unfortunately, theforward procedure
andbackward procedure, components of the Baum-Welch al-
gorithm which recursively and efficiently compute the joint
PDF of the field of noisy measurments, do not generalize to
the NSHP two-dimensional model.

In this paper, we demonstrate approximate equivalents to
the forward procedure and backward procedure. The result
is an approximate Baum-Welch algorithm for estimating the
parameters of the NSHP Markov model as well as the obser-
vation PDFs.

1.3 Non-symmetric half-plane (NSHP) Model.

The NSHP neighborhood system has been used for two-
dimensional autoregressive analysis and image and texture
analysis [7],[8], [6]. The NSHP model is based on ordering
the pixels in an image by scanning in a raster pattern (see fig-
ure 1). As we scan the plane from left to right, and bottom to
top, when we reach pixel “A”, we have already visited “B”,
“C”, “D”, and “E”. Because each of the pixels in the ROS are
in the “past”, we can construct a recursiveforward procedure
that computes state probabilities based on “past” pixels.
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Figure 1: Illustration of the neighbohood system of the non-
symmetric half plane model (NSHP). Pixel A is represented
statistically in terms of neighbors B,C,D, and E.

2. MATHEMATICAL ALGORITHM DESCRIPTION

2.1 Notation and mathematical definition of the NSHP
model.

Let xi, j ∈ RD be the dimensionD data (feature vector) at
pixel i, j where 1≤ i ≤ N1, 1≤ j ≤ N2. We define the “past
data”X<i, j> as all data occurring “before”xi, j that is either
to the left or below and not includingxi, j . More precisely,

< i, j >= {i′, j ′} : (i′ < i AND j ′ = j) OR ( j ′ < j).

We also define the “past and current data”Xi, j as the union
of X<i, j> andxi, j . We definepi, j(m|X<i, j>) as thea priori
probability of statem at pixel i, j given all data up to but not
includingxi, j . Similarly, we definepi, j(m|Xi, j ) as thea pos-
teriori probability of statem at pixel i, j given all data up to
and includingxi, j . Let the index variablesr,s,t,u index over
the states of the neighbor pixels (“B”, “C”, “D”, and “E”,
respectively in figure 1). LetM be the number of possible
states.

2.2 NSHP forward procedure.

The forward procedure in HMM terminology [3] recursively
computes the state probabilities at each pixel. It also com-
putes the joint probability of all the data given the model,
which is needed in a classifier. We can recursively compute
the state probabilities as follows. In the first step of the for-
ward procedure we compute thea priori probability

pi, j(m|X<i, j>) =
M

∑
r=1

M

∑
s=1

M

∑
t=1

M

∑
u=1

pi, j(m, r,s,t,u|X<i, j>)

≃
M

∑
r=1

M

∑
s=1

M

∑
t=1

M

∑
u=1

pi−1, j−1(r|Xi−1, j−1)

pi, j−1(s|Xi, j−1) pi+1, j−1(t|Xi+1, j−1)

·pi−1, j(u|Xi−1, j) Cr,s,t,u(m),
(1)

whereCr,s,t,u(m) is theM4×M state transition matrix. The
expression that replacespi, j(m, r,s,t,u|X<i, j>) uses only
quantities that have been previously computed. It is approx-
imate because (a) the data conditions used in the terms on

the right hand side (RHS) are not equivalent to the data con-
dition X<i, j> used on the left hand side (LHS) and (b) the
joint probability pi, j(m, r,s,t,u|X<i, j>) is approximated by
the product of the marginals. Although the RHS expression
is approximate, it (a) depends only upon data that is strictly
contained in the conditionX<i, j> and (b) is a probability on
(m, r,s,t,u). Thus, the result is still a valid PDF and produces
in the end a valid PDF onX. This is an important observation
because the maximization of the resulting approximate data
field PDF over the model parameters would not be a valid
approach if this were not true.

The a posteriori probability is denoted byα i, j
m and is

computed by updating (1) using the data at pixeli, j

α i, j
m = pi, j(m|Xi, j ) =

pi, j(m|X<i, j>)p(xi, j |m)
M

∑
n=1

pi, j(n|X<i, j>)p(xi, j |n)

, (2)

wherep(x|m), m= 1. . .M, are the state PDFs represented
as Gaussian mixtures [3].

The joint PDF of the data up to and includingxi, j can be
recursively computed in parallel:

p(Xi, j ) = p(Xi−1, j) p(xi, j |Xi−1, j)
= p(Xi−1, j) p(xi, j |X<i, j>)

= p(Xi−1, j)
M

∑
m=1

p(xi, j |m) pi, j(m|X<i, j>).

(3)
When the algorithm reaches the last pixel (i = N1, j = N2),
the joint PDF of the entire field is given by

L(X) = logp(XN1,N2).

2.2.1 Initialization

The forward procedure (1), (2), (3) assumes that theα i, j
m at

all four neigbors have already been calculated. To initialize
the algorithm, we begin with the first pixel(i = 1, j = 1). For
this, we need thea priori state probabilitiesπ(m), 1≤ m≤
M. Then, we can progress through the first row of pixels us-
ing the well-known HMM forward procedure. For this we
need the 1-D state transition matrix (STM)Au(m) = Pr(st =
m|st−1 = u). When we reach the first pixel of the second row,
we need a reduced version ofCr,s,t,u(m) since there is no
pixel immediately to the left (pixel “E” in figure 1). There is
also no pixel underneathandto the left pixel “B” in figure 1),
however if we choose, we can wrap data around to that the
last pixel on the first row takes the place of pixel “B”. Us-
ing this approach of wrapping around pixel “B”, the reduced
STM is M3 − by−M and is denoted byBr,s,t(m). The ini-
tialization is a straight-forward simplification of (1), (2), (3)
made by removing the indexu and associated factors.

2.2.2 Synthesis of Random fields.

Just as the forward procedure is analogous to the forward
procedure of the HMM, the synthesis of discrete random
fields is directly analogous to the Markov chain. To syn-
thesize a random field from the model, we first synthesize a
discrete random field, then as a second step, synthesize fea-
ture values from the state PDFs given the chosen states at
each pixel. State synthesis is an algorithm directly parallel
to the forward procedure: we use the STM to determine the



state probabilities of theM states at a given pixel given the
already-chosen states of the “past” neighbors, select the dis-
crete random variable, then continue to the next pixel.

2.3 NSHP backward procedure.

Only the forward procedure is needed to compute total field
probability given the model. The time-reversed version,
called thebackward procedure[3], is needed as a component
of theBaum Welchalgorithm to re-estimate the model param-
eters [3]. Unfortunately, it is impractical to create a NSHP
version of the backward procedure that follows the spirit of
the one-dimensional version because the NSHP neighbor-
hood system is not a simply ordered Markov model. The
state transition matrix,Cr,s,t,u(m) in eq. 1), is of dimen-
sion M4-by-M. To implement the backward procedure, we
would require the backward version ofCr,s,t,u(m), denoted
by C

b
r,s,t,u(m), which must also be of the same dimensions.

In the one-dimensional backward procedure, it is simply
the transpose of the forward STM. The backward procedure
uses backward versions of the reduced STMs for initializa-
tion analogous to the forward procedure (denoted byπb(m),
Ab

u(m), B
b
r,s,t(m)). For the NSHP backward procedure, we

have two choices, resulting in two different algorithms:

1. NSHP-Symmetric algorithm: Assume that the problem
is 180-degree symmetric and useC

b
r,s,t,u(m)=Cr,s,t,u(m).

This can be used for textures that are symmetric (in the
sense of rotating them by 180 degrees).

2. NSHP-Non-symmetric algorithm: EstimateCb
r,s,t,u(m)

separately. This adds to the number of parameters
that must be estimated but allows applicability to non-
symmetric textures.

LetYi, j andY<i, j> representfuture datawith respect toxi, j ,
inclusive and exclusive ofxi, j , respectively. The NSHP back-
ward procedure, analogous to (2) is given by

β i, j
m = pi, j(m|Y<i, j>)

≃
M

∑
r=1

M

∑
s=1

M

∑
t=1

M

∑
u=1

pi+1, j+1(r|Yi+1, j+1)

·pi, j+1(s|Yi, j+1) pi−1, j+1(t|Yi−1, j+1)

·pi+1, j(u|Yi+1, j) C
b
r,s,t,u(m).

(4)

To continue the recursion, we also need the data-updated
probabilities ofβ i, j

m , denoted byδ i, j
m :

δ i, j
m

∆
= pi, j(m|Yi, j) = β i, j

m p(xi, j |m).

Equation (4) can then be rewritten

β i, j
m =

M

∑
r=1

M

∑
s=1

M

∑
t=1

M

∑
u=1

δ i+1, j+1
r δ i, j+1

s δ i−1, j+1
t

δ i+1, j
u C

b
r,s,t,u(m).

(5)

Initialization is analogous to the forward procedure.

2.4 NSHP Baum-Welch algorithm.

We now describe an algorithm that parallels the well-known
Baum-Welch algorithm for the HMM [3]. The state probabil-
ities given all the data are denoted byγ in HMM terminology
[3]. Let

γ i, j
m = pi, j(m|X),

whereX is all the data. We have

γ i, j
m ≃

α i, j
m β i, j

m

∑
k

α i, j
k β i, j

k

.

Note that denominator is just the numerator summed overm,
so computingγ i, j

m can be done in two steps: (a) multiplying
α i, j

m andβ i, j
m together, then (b) normalizing so thatγ i, j

m sums
to 1 overm.

We can useγ to detect likely instances of certain states
in the data. We can also use it to re-estimate state transi-
tion probabilitiesCr,s,t,u(m) as well as the state likelihood
functionsp(xi, j |m), which are represented by Gaussian mix-
tures. We can approximate theBaum Welchalgorithm to re-
estimateCr,s,t,u(m) using

Ĉr,s,t,u(m) = ∑i ∑ j γ i, j
m γ i−1, j−1

r γ i, j−1
s

· γ i−1, j−1
t γ i−1, j

u .

(6)

followed by a normalization operation to insure that

∑
m

Ĉr,s,t,u(m) = 1.

The same formula, applied on the 180-degree rotated data
field can be used to estimateCb

r,s,t,u(m) if for the non-
symmetric option. Re-estimation of state PDFs, which can
be represented by Gaussian mixtures, follows the 1-D ap-
proach [3].

3. EXPERIMENTAL RESULTS

3.1 Synthetic Data

We created a 180-degree symmetric synthetic data class from
a notional blue ellipse filled with green on a red background.
Examples of the data are shown in figure 2. The data are
three-dimensional (RGB) feature vector with additive Gaus-
sian noise. The ellipse is randomly positioned in the plane.
We also created a non-symmetric synthetic texture data class
from repeating triangles in a green field (figure 3).

3.2 NSHP-Symmetric Model

We trained the NSHP-symmetric model withM = 3 discrete
states on 30 samples of the symmetric texture from figure
2. The state PDFs were represented by a single Gaussian
(mixture with 1 component) and was initialized randomly in
thirty-two random trials. The algorithm was halted if the log-
likelihood began to decrease. The best random trial was used.
A representation of theγ probabilities for one data sample is
shown in figure 4. This can be compared with the data in
figure 2. The NSHP model easily generates random fields
as shown by the example in figure 5. The random fields can
be compared with figure 4. Clearly the NSHP model has suc-
ceeded in learning the synthetic pattern. When we trained the
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Figure 2: One example of the symmetric “ellipse” synthetic
data field. Rotating the image by 180 degrees produces an
equally valid sample. Data is a three-dimensional feature
vector rendered as an RGB image.

Figure 3: One example of the non-symmetric synthetic data
field. Rotating the image by 180 degrees does not produce
a valid sample. Data is a three-dimensional feature vector
rendered as an RGB image.

symmetric model on the non-symmetric data and synthesized
random fields, we obtained figure 6. As we would expect, we
see character in the synthetic pattern of triangles, but there is
no apparent up or down.

3.3 NSHP Non-Symmetric Model

When we trained the non-symmetric model on the non-
symmetric texture in figure 3 and synthesized random fields,
we obtained figure 7. Here, we see clearly the upward-
pointing triangles.

3.4 Extended feature (EF) vector model.

In hidden Markov models, to which the algorithm we have
described belongs, the statistical relationship between apixel
and its neighbors is based on discrete states only. If the num-
ber of states is small, we do not have the benefit of accu-
rately predicting the color of a given pixel from the color of
its neighbors except through their discrete states. This can
limit the usefulness of the models. From a strict application
of Bayes theorem to develop a joint PDF of the noisy vector
field, there is no reason we cannot also use the feature val-
ues in the neighboring pixels to assist in the prediction. To
this end, we create at each pixel an extended feature vector
x

e
i, j ∈ R5D which is of dimension 5D because it includes the

feature vectors of the current pixel plus the four neighbors.
It must be kept in mind that by using extended feature

vectors, we are in effect creating a new, higher-dimension
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Figure 4: Gamma probabilities for the example in figure 2.
The image is coded with a color representing the most likely
state as determined byγ i, j

m . Red: state 1, green: state 2, blue:
state 3.

Figure 5: Synthetic random field generated by the NSHP
symmetric model trained on the data in figure 2.

random field. Since each feature vector from the origi-
nal field is replicated 5 times, the new higher-dimensional
field is redundant. Nevertheless, the forward procedure just
described provided a PDF value for the field of extended
vectors. When we synthesize random fields from the non-
symmetric model on extended feature vectors, and obtained
figure 8, there is the appearance of better texture synthesis
than figure 7.

3.5 Conditional-Extended feature (CEF) vector model.

As we explained, the forward procedure operating on the ex-
tended feature vectors produces an exact PDF of the field of
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Figure 6: Synthetic random field generated by symmetric
NSHP model trained on the data in figure 3. Left: states,
Right: color image. There is no apparent up or down evident
in the synthetic field.
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Figure 7: Synthetic random field generated by non-
symmetric NSHP model trained on the data in figure 3. Left:
states, Right: color image. In contrast to figure 6, there is a
clear notion of up and down evident in the synthetic field.
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Figure 8: Synthetic random field generated by non-
symmetric NSHP model with extended feature (EF) vectors
trained on the data in figure 3. Left: states, Right: color im-
age.

extended feature vectors. Exact is meant in the sense that for
a fixed set of parameters, it integrates to exactly 1. This is
useful in classification of textures provided all texture mod-
els being compared use the same EF model. However, if we
need the PDF of the original field, we must use the condi-
tional PDFs. Let

zi, j =

[

xi, j
wi, j

]

,

wherexi, j is the feature vector at pixeli, j andwi, j is the
4D-by-1 vector of features from the four NSHP neighbors.
In the forward procedure, we use in place of the state PDFs
the conditional PDFp(xi, j |m,wi, j). The necessary condi-
tional PDFs can be generated easily from Gaussian mixtures
in closed form, even with more than one mixture component.
We synthesize random fields from the CEF model and ob-
tained figure 9. We see a degradation wih respect to figure 8.

4. CONCLUSIONS

We have presented a statistical model for two-dimensional
fields of pixels where each pixel is represented by a
continuous-valued feature of arbitrary dimension. The model
is directly analogous to the one-dimensional hidden Markov
model (HMM). We have described an fast approximate for-
ward procedure that recursively computes the joint PDF of
the entire data field as well as an algorithm for re-estimation
of model parameters modeled after the well-known Baum-
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Figure 9: Synthetic random field generated by non-
symmetric NSHP model with conditional extended feature
(CEF) vectors trained on the data in figure 3. Left: states,
Right: color image.

Welch algorithm for the one-dimensional HMM. We have
also described variations that utilize extended feature vectors
to permit effective feature prediction that would not other-
wise be possible with doubly-stochastic models. We have
also demonstrated the algorithm’s ability to learn textures.
Based on texture synthesis, the extended feature vector (EF)
model appears to be superior. We found this also to be the
case in texture classification experiments which space limi-
tations do not allow us to describe.
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