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Abstract—Real-world acoustic events span a wide range of
time and frequency resolutions, from short clicks to longer
tonals. This is a challenge for the hidden Markov model (HMM),
which uses a fixed segmentation and feature extraction, forcing a
compromise between time and frequency resolution. The multi-
resolution HMM (MR-HMM) is an extension of the HMM
that assumes not only an underlying (hidden) random state
sequence, but also an underlying random segmentation, with
segments spanning a wide range of sizes and processed using a
variety of feature extraction methods. It is shown that the MR-
HMM alone, as an acoustic event classifier, has performance
comparable to state of the art discriminative classifiers on three
open data sets. However, as a generative classifier, the MR-HMM
models the underlying data generation process and can generate
synthetic data, allowing weaknesses of individual class models to
be discovered and corrected. To demonstrate this point, the MR-
HMM is combined with auxiliary features that capture temporal
information, resulting in significantly improved performance.

I. INTRODUCTION

A. Motivation and Background

The classification of acoustic events is part of an emerging
field of machine hearing [1]. Approaches based on the hidden
Markov model (HMM) [2] have origins in speech recognition
[3]. As the field matures, more methods emerge [4], [5],
[6], [7], [8], [9]. Many newer methods are inspired by the
machine learning field (deep neural networks) [10], [11],
[12], [13]. These discriminative methods avoid the daunting
task of designing generative models for each signal class.
But, if performance is equal, a generative model is always
prefererable because it models the processes underlying the
data, and can generate data, allowing the quality of the
model to be judged. The HMM is a versatile generative
model, but is limited by the reliance on a fixed (uniform)
segmentation of the data and a fixed feature extraction. With
maximum entropy PDF projection (MEPP) [14], [15], the
freedom exists to combine multiple feature extractors and
window (segment) sizes together in a single generative model.
The multi-resolution HMM (MR-HMM) was introduced to
do this [16], [17], [18], [19]. In this paper, the MR-HMM is
demonstrated as an acoustic event classifier.

B. MR-HMM description

The MR-HMM [17] is a type of graphical model [20]
with random segment size, modeling the raw data (instead of
features). It uses features indirectly through PDF projection
[21]. The best way to explain the MR-HMM is to review the
HMM, then convert it to a MR-HMM in 4 conceptual steps.

1) The HMM: The HMM is a statistical model for a
sequence of features extracted from the time-series using
equally-spaced overlapping processing windows. Let ❩ be
a sequence of ❚ feature vectors ❩ ❂ ❬③✶❀ ③✷ ✿ ✿ ✿ ③� ❪✿ The
HMM assumes an underlying discrete Markov state label
s✐ ✁ ❬✂❀ ▲❪ associated with feature vector ③✐, that is chosen
in time order, according to a discrete probability distribution
depending only on the last chosen state. This Markov process
is described by an ▲ ✄ ✂ prior distribution (for the first
feature vector) and an ▲ ✄ ▲ state transition matrix (STM).
The HMM further assumes that the feature vector ③✐ is a
sample drawn from the probability density function (PDF)
given by ♣✭③❥s✐✮, depending only on s✐. Let ☎ be one possible
state sequence, ☎ ❂ ❬s✶❀ s✷ ✿ ✿ ✿ s� ❪✿ A key HMM assumption
is mutual conditional independence of the feature vectors,

so that ❧♦❣ ♣✭❩❥☎✮ ❂
P�

✐✆✶ ❧♦❣ ♣✭③✐❥s✐✮✿ To get the joint
marginal PDF ✝✭❩✮, it is necessary to average over all
state sequences ♣✭❩✮ ❂

P

✞ ♣✭❩❥☎✮ ✝ ✭☎✮❀ where ✝✭☎✮ is
just a product over the Markov state transition probabilities.
Fortunately, ♣✭❩✮ can be computed efficiently using the well-
known forward procedure [3]. Let ✟ be the set of all HMM
parameters. The HMM efficiently solves the three fundamental
problems (a) Segmentation : ❫☎ ❂ ❛r❣♠❛①✞ ♣✭❩❥☎✠✟✮❀ and (b)
Classification : ❫✡ ❂ ❛r❣♠❛①☛ ♣✭❩✠✟☛✮✿ (c) Estimation :
❫✟ ❂ ❛r❣♠❛①☞

P

✌ ❧♦❣ ♣✭❩✌✠✟✮❀

2) Step 1: Time Series HMM (Proxy HMM): The first
conceptual step is to convert the HMM from a feature se-
quence model into a time-series model by replacing the feature
vector ③✐ by a short time-series segment of length ❑ samples
✍✐ ❂ ❬✎✶✰✏✑✒✶✓✐❀ ✿ ✿ ✿ ✎✑✐❪✿ Assume no segment overlap and
no shading function, so that a sequence of ❚ short segments
of length ❑ is equivalent to the full time-series of length ◆t

❳ ❂ ❬✎✶❀ ✎✷ ✿ ✿ ✿ ✎✔✕❪, where ◆t ❂ ❑ ✖ ❚ . The HMM with
❑-sample segmentation of the raw data is conceptual only,
and will be used later as a proxy for computing the necessary
probabilities.

3) Step 2: Random segment sizes: The second step is to
relax the assumption of constant segment size. Assume that
the segment size is chosen from a set ✗ of ♥ elements,
for example ✗ ❂ ❢✘✹❀ ✸✻❀ ✹✽❀ ✼✘❀ ✾✻❀ ✂✹✹❀ ✂✾✘❀ ✘✽✽❀ ✸✽✹❀ ✼✻✽✙,
where ♥ ❂ ✂✵, and all segment sizes are divisible by the base
segment size ❑, ❑ ❂ ✂✘ in the above example. The MR-
HMM generates a sequence of ❙ segments as follows. The
segment counter ✚ is initialized to 1, then

1) If ✚ ❂ ✂, select the discrete segment state s✐ ac-
cording to the initial state probabilities ✛✭s✮, where
P✜

✢✆✶ ✛✭s✮ ❂ ✂❀ otherwise use the STM ❆✭s✐✒✶❀ s✐✮.
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2) Select the segment size index ❥✐ according to the
discrete probability ✚s�❀✁ , where

P♥
✁❂✶ ✚s�❀✁ ✂ ✄.

Segment ☎ will have length ❦✭❥✐✮ ✂ ❑✭❥✐✮, which is
the ❥✐-th element of set ❑.

3) If ☎ ❁ ❙, increment ☎ and go to step 1.

This process results in a random segmentation denoted by
q ✂ ❢✆✶✝ ✆✷✝ ✿ ✿ ✿ ✆✞✝ ❥✶✝ ❥✷✝ ✿ ✿ ✿ ❥✞❣✿ The total length of the

time-series will be ◆t ✂
P✞

✐❂✶ ❑✭❥✐✮✿ Note that q specifies
not only the segment size assignment, but also the segment
class label assignments. Based on this generation process, the
probability of generating a particular segmentation q is:

✟✭q✮ ✂ ✙✭✆✶✮✚s✠❀✁✠

✞✡❨

✐❂✷

❆✭✆✐☛✶✝ ✆✐✮✚s�❀✁� ✿ (1)

Note that (1) is the exact probability of generating a random
segmentation of ❙ segments which has random length. It is
only an approximation, albeit a good one, for a time-series
of fixed length1. Using mutual conditional independence,

❧♦☞ ♣✭❳✌q✮ ✂
P✞

✐❂✶ ❧♦☞ ♣✭①✐✌✆✐✝ ❥✐✮✿ Expanding ♣✭❳✮,

♣✭❳✮ ✂

✍

✎

♣✭❳✌q✮ ✟ ✭q✮✝ (2)

with the summation over all possible segmentations q. Equa-
tion (2) is the key expression of the MR-HMM, giving the
probability distribution of ❳ as the expected value of ♣✭❳✌q✮,
with expectation taken over the distribution of segmentations
q, given the set ❑ of allowable segmentation sizes. It sum-
marizes the information from all the possible segmentations
in a single quantity! It still remains to describe how (2) is
efficiently computed.

4) Step 3: Mapping to Proxy HMM: In order to avoid
the brute-force implementation of (2), it is possible to map
the MR-HMM to a proxy HMM, which can compute (2)
using the well-known forward procedure. The proxy HMM
is a standard HMM operating on hypothetical base segments
of length ✏ . Therefore, for every MR-HMM segment of
length ❦ base segments, there are ❦ proxy HMM segments,
and the proxy HMM segment log-likelihood functions are
just ✄✑❦ times the segment log-likelihood of the MR-HMM
segment. For every MR-HMM segmentation q there must
exist a corresponding path through the simpler proxy HMM
trellis. Therefore, there must be enough proxy HMM states
to encode any segmentation: the state ✆✐, the segment size
❥✐, and the position ✒ within the segment (called wait state),

a total of
P▲

s❂✶

P♥
✁❂✶ ❦✭❥✮ states. The proxy STM is very

large, but sparse and highly structured, forcing each wait
state to be visited in turn, and only allowing transitioning
to a different state label ✆ and segment size index ❥ once
the last wait state is reached. The proxy HMM STM is
constructed in the obvious way from ✙✭✆✮, ❆✭✆✝ ✆✵✮, ✚s❀✁

so that the probability of a given path through the state
diagram is (1). Using the proxy HMM and the methods
developed for the HMM [3], the fundamental problems are
solved: (a) Segmentation : ❫q ✂ ❛r☞♠❛✓✎ ♣✭❳✌q✔✕✮✝ and (b)
Classification : ❫✖ ✂ ❛r☞♠❛✓✗ ♣✭❳✔✕✗✮✿ It also solves the

third: (c) Estimation : ❫✕ ✂ ❛r☞♠❛✓✘
P

✛ ❧♦☞ ♣✭❳✛✔ ✕✮✝ as
explained in below.

1Near the end of the time-series, the probability of choosing a segment
length longer than the remining number of samples must be zero.

5) Step 4: Mapping to features: Using the proxy HMM,
we have already solved the problem of summarizing the like-
lihood functions from different-sized segments. But, how can
we compute the likelihood functions from large time-series
segments, and how can we use different feature extractors?
To solve this problem, we turn to PDF projection [21]. Much
has been written on the topic [21], [14], [15], so only the
main points are reviewed here. Let ① ✜ ❘✢ be a segment
of the input time-series (raw data), of dimension ◆ , where
◆ ✂ ❦✭❥✮ ✣ ✏ . Let ③ ✂ ❚✭①✮ be an arbitrary feature, where
③ ✜ ❘❉, and ✤ ❁❁ ◆ . Assume for the moment that
the feature PDF, denoted by ✥✭③✮, is known. Then, the log-
projected PDF is given by

❧♦☞●✭①✔❍✦✮ ✂ ❧♦☞ ♣✭①✌❍✦✮ ✧ ❧♦☞ ♣✭③✌❍✦✮ ✰ ❧♦☞ ✥✭③✮✝ (3)

where ❍✦ is a fixed statistical reference hypothesis. It may
be shown [21], [14], [15] that ●✭①✔❍✦✮ is a PDF, so★

✩ ●✭①✔❍✦✮ ✂ ✄✿ Samples draw from ●✭①✔❍✦✮, and passed
through the feature transformation ❚ ✭①✮ will have exactly
distribution ✥✭①✮, so ●✭①✔❍✦✮ is consistent with ✥✭①✮. All
PDFs consistent with ✥✭①✮ may be written in the form (3),
and depend only on the chosen reference hypothesis ❍✦.
Subject to some mild requirements [14], ❍✦ may be chosen
for maximum entropy (MaxEnt) of ●✭①✔❍✦✮. Maximizing
the entropy is a well established principle in PDF estimation
[22], [15] that allows the PDF estimate to express not only
the available knowledge about ①, but also the ignorance. Let
❍✪
✦ be this maximum entropy (MaxEnt) reference hypothesis.

This defines a unique MaxEnt projected PDF, denoted by
●✪✭①✮ ✂ ●✭①✔❍✪

✦ ✮. For the data treated in this paper, i.e.,
Gaussian-like data, raw acoustic recordings, with no strict
upper or lower bonds in amplitude, the Gaussian reference

hypothesis ♣✭①✌❍✪
✦ ✮ ✂ ✭✫✙✮☛✢✬✷ ❡✓✯

✱

✧

P✲
�✳✠

✴✸�
✷

✹

produces

maximum entropy.

For feature extraction that involves several stages of feature
reductions, the combined feature chain is most easily analyzed
using the chain-rule, which allows stage-by-stage application
of MaxEnt PDF projection [21], [19].

To apply PDF projection to the time-series segment prob-
ability ♣✭①✌✆✝ ❥✮ one needs feature extractor, denoted by ③ ✂

❚s❀✁✭①✮, and an estimate of the feature distribution ❫♣✭③✌✆✝ ❥✮.
Then

❧♦☞ ❫♣✭①✌✆✝ ❥✮ ✂ ❧♦☞ ♣✭①✌❍
✪
✦ ✮ ✧ ❧♦☞ ♣✭③✌❍

✪
✦ ✮ ✰ ❧♦☞ ❫♣✭③✌✆✝ ❥✮✿

(4)
Estimation of ❫♣✭③✌✆✝ ❥✮ proceeds analogous to the standard
HMM [3]. For example, the estimate of the mean of the
distribution ❫♣✭③✌✆✝ ❥✮ is just the weighted average of ③ -
weighted by the a posteriori probabilities that the segment
belongs to state ✆, segment size index ❥. Re-estimation of
covariances and the transition probabilities ✙✭✆✮, ❆✭✆✝ ✆✵✮ is
also analogous [17].

Segment time-series data is generated from PDF (4), using
the 2-step process called uniform manifold sampling (UMS)
[15] (a) generate a sample of the feature PDF ❫♣✭①✌✆✝ ❥✮,
denoted by ③✪, (b) determine the level set ▼✺ ✂ ❢① ✻

❚s❀✁✭①✮ ✂ ③✪❣ and draw a sample ① from ▼✺ uniformly
- so that no element of ▼✺ is more likely to be chosen than
another. More on this topic can be found in the references
(Section III.B of [15]).
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Configuration 1 (❑ ❂ ✶✷) Configuration 2 (❑ ❂ ✸✷)
Segment Size Band functions Segment Size Band functions

36 3 32 3

48 4 64 4

72 6 96 6

96 8 128 8

144 12 192 12

192 16 256 16

288 24 384 24

384 32 768 48

576 48

768 64

TABLE I. BASE SEGMENT SIZE� , FFT (SEGMENT) SIZES AND

NUMBER OF MEL-SPACED BAND FUNCTIONS FOR TWO DIFFERENT

MR-HMM CONFIGURATIONS. ▲ ✁ ✻ STATES WERE USED FOR BOTH

CONFIGURATIONS.

II. MR-HMM CONFIGURATION AND TRAINING

A. MR-HMM Features

As explained, the MR-HMM can apply different feature
extraction methods for each combination of segment size and
state. For simplicity, however, we used just one feature type
across all segment sizes. We used MEL-cepstral features,
widely used in speech processing, which are described in
detail in ([14], page 2821). A rectangular time-domain window
function was used (no shading), which is justified by the au-
tomatic segmentation inherent to MR-HMM. The parameters
of the various cepstral features are provided in Table I for
two different segmentation configurations ✂, providing either
♥ ✄ ☎✵ or ♥ ✄ ✽ different segment sizes. All segment sizes
are divisible by the respective base segment size. The number
of proxy HMM states for the two configurations in Table I,
are 217 and 60 proxy states per state, respectively (We used
✆ ✄ ✝ states). The second configuration is more efficient from
computational point of view. Note that the ratio between the
segment size and number of band functions is constant. In this
way, frequency and time resolution are traded off in proportion
and the aggregate number of features for a given time-series
is independent of the segmentation q.

B. MR-HMM initialization and training

To initialize the MR-HMM, a general-purpose time-series
segmentation algorithm was employed to divide each time-
series into segments of various size with similar spectral
content [23]. This segmentation is only used for the purpose
of initialization. To automatically determine a set of ✆ states,
the spectral content of the segments of the initial segmentation
is clustered into ✆ clusters. For a spectral representation that
was independent of segment size, we used cepstral coefficients
(the DCT of the log of the magnitude-squared DFT), keeping
always 25 coefficients regardless of segment size. If ✞ was
less than 48, we zero-padded to 25 coefficients. Then, the
collection of 25-dimensional segment cepstral vectors from
all segments of various sizes were clustered using K-means
to ✆ clusters. Each segment was then classified as one of the
✆ states to initialize the MR-HMM segment feature PDFs,
modeled as Gaussian, for each combination of segment size
and state. All the discrete probabilities including the initial
state probabilities ✙✭s✮, the segment size probabilities ✚✟❀❥ ,
and the state transition probabilities ❆✭s✠ s✡✮ were intitialized
to flat (uniform) distributions. We trained the MR-HMM with
state “ganging” (See [17], Section III.C) for 40 iterations,

MR-HMM Only (Configuration 1, ❑ ❂ ✶✷, ☛ ❂ ☞)
Data Set Errors Tests Error (%) % Correct Best Published

Office Sounds 11 2448 0.45% 99.55% 99.6% [24]

Freiburg106 10 732 1.37% 98.63% 98.9% [5] (*)

NAR 10 252 3.97% 96.03% 96.0% [26] (**)

MR-HMM Only (Configuration 2, ❑ ❂ ✸✷, ☛ ❂ ☞)
Data Set Errors Tests Error (%) % Correct Best Published

Office Sounds 12 2448 0.49% 99.51% 99.6% [24]

Freiburg106 10 732 1.37% 98.63% 98.9% [5] (*)

NAR 8 252 3.17% 96.83% 96.0% [26] (**)

TABLE II. CLASSIFICATION PERFORMANCE USING MR-HMM ONLY.
(*) F-SCORE. (**) TEN-FOLD CROSS-VALIDATION.

or until
P

✐ ❧♦❣ ♣✭❳✐✌ ✍✮ stopped increasing, whichever came
first. We used specialized software written in C to take
advantage of the sparse and highly structured state transition
matrix of the proxy HMM to achieve about two orders of
magnitude processing time reduction.

III. EXPERIMENTAL RESULTS

A. Data description

1) Office Sounds database: The Office Sounds database
[24], [25] contains twenty-four signal classes containing 102
samples of each class, a total of 2448 example sounds created
by dropping common objects or operating office tools such
as scissors or staplers. All time-series are 16128 samples long
(1/2 second in duration at 32000 Hz). The dataset was divided
using 2-fold cross-validation into even and odd-numbered sets
of 51 samples per class. Both “folds” were tested producing
2448 classifier decisions.

2) NAR database: The NAR dataset [26], [2] contains 12
event categories, with 21 events of each category. The data
is recorded in a home (kitchen) environment at 48000 Hz
using inexpensive microphones. We used 4-fold data holdout
by selecting every fourth event for testing, and the remaining
3/4 of the data for training. We conducted all four “folds” and
averaged the results. There were 252 classifier decisions.

3) Freiburg 106 database: The Freiburg-106 dataset [5],
[9] contains 1,479 audio-based human activities of 22 cate-
gories recorded in a home (kitchen) environment at 44100
Hz using an inexpensive microphone. We used only the first
channel in our experiments2. We shortened event 80 of Cate-
gory 22 to 88000 samples so that it did not disproportionately
influence training. We used 2-fold cross-validation as in [5],
[9]. There were 732 classifier decisions.

B. MR-HMM Results

We measured classification performance using both MR-
HMM configurations in Table I. When classifying, we used a
Bayesian class prior ✎✭❍♠✮ proportional to the total number
of testing samples. Classification performance for all three
data sets is shown on Table II using the specific data holdout
method described for each data set. The results are comparable
to the best published results, which are also provided in
Table II. Below it is shown how the MR-HMM can be easily
complemented in order to achieve significantly better results.

2The existence of the second channel is not explained in the references.
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C. Auxiliary Features

Once the MR-HMM is trained, time-series data can be
generated using the process described in Section I-B3 to
generate a segmentation, then using the process of Section
I-B5 to generate the segment data. By synthesizing events
and comparing them with real data, it can be determined
what is missing in the statistical model. In Figure 1, synthetic
events are shown for three of the classes from “Freiburg106”
data set. The synthetic event for the first class is quite
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Fig. 1. Spectrograms of real data (left) and synthetic data (right) for
classes ”hair dryer” (top) and “flatware sorting” (middle), and “brushing
teeth” (bottom).

good, showing excellent spectral and temporal fidelity. For
the second and third classes, the spectral representation is
good, but the temporal distribution is poor. The Markov model
cannot adequately represent exponentially decaying sounds
(“flatware sorting”) or periodic sounds (“brushing teeth”).
This inability to adequately represent the temporal dimension
is independent of data set, it is a weakness of the Markov
model. To address the defficiencies in the statistical model as
demonstrated by the synthesis above, we employ a set of aux-
iliary feature designed to capture any missing characteristic,
such as temporal distribution.

1) Energy Cepstrum: The energy cepstrum is the MEL
frequency cepstral coefficients (MFCC) applied to the log of
the short-time averaged energy, which was measured at a rate
of 240 Hz. After taking the log, the energy time-series was
de-meaned, then passed into a MEL filter bank of 24 bands,
log, DCT, and the lowest 12 DCT coefficients were retained.

2) Piecewise Linear Fit to Log-Energy: Many event cate-
gories contain bangs caused by striking hard objects producing
sounds with fast onset and exponentially decaying sound level.
In the log-energy domain, this looks like a piece-wise linear
function. To capture this effect in a set of features, we fit
a piecewise-linear function to the log-energy time-series. In
a straight-forward application of dynamic programming, we
found the best set of line-segments that matched the log-
energy in terms of least-squares error. A best solution was

found for each number of line segments from 1 to 24. As more
line-segments are added, the total squared error decreases
and the log-likelihood (assuming Gaussian model) increases.
But, if a minimum description length (MDL) penalty [27]
is subtracted from the log-likelihood, it reaches a peak and
then falls as more segments are added. Figure 2 shows an
example of fitting to the log-energy time-series of a sample
of “microwave door” from “Freiburg106”. The solution at 4
segments had the highest MDL-corrected log-likelihood and
was selected. We gathered three features from the piecewise-
linear fit: average segment length, average segment slope, and
log-likelihood improvement (w/respect to 1 segment).

Fig. 2. Piecewise linear fit to log-energy for a sample of “microwave door”
from “Freiburg106”. Left: spectrogram. Center: MDL-corrected log-likelihood
as a function of number of segments. Right: Fit at 4 segments.

3) High-order moment: Some data classes have an im-
pulsive character. To capture the impulsiveness of the data,
we measured the 4-th moment of the raw data (with mean
removed and normalized for variance 1).

D. Hybrid MR-HMM/Auxiliary Feature Classifier

The 16 auxiliary features (12 energy MFCC, 3 piecewise-
linear-fit, and 1 high-order-moment) were modeled by a Gaus-
sian distribution assuming independence among the features.
A combined classifer was created by additively combining
the MR-HMM and auxiliary feature classifier using ▲♠ ❂

❧♦❣ ♣✭❳❀ ✄♠✮�♥ ✰ ☛ ❧♦❣ ♣♠✭③✮, where ♣✭❳❀ ✄♠✮ is the MR-
HMM likelihood function (2), and ♣♠✭③✮ is the auxiliary
feature likelihood function, ☛ is the mixing factor, and ♥ is
the total number of samples in the test time-series. Figure 3
shows the total number of classifier errors as a function of the
mixing factor for all three data sets. A mixing factor between
0.1 and 0.4 seems to be suitable for all three data sets. The
minumum errors are tabulated in Table III and exceeded best
published results. If we insist on having a constant mixing
factor, then using a value of 0.2 is a good compromise among
all data sets, with performance worsening by no more than a
single additional error.

IV. CONCLUSIONS

We have demonstrated the usefulness of the MR-HMM as
an acoustic event classifier. For a three public data sets, the
MR-HMM by itself performed comparable to best published
results. However, MR-HMM is based on a Markov model, so
does not offer an accurate statistical model of the temporal
dynamics, which was vividly demonstrated by synthesizing
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MR-HMM + Aux (Configuration 1, ❑ ❂ ✶✷, ▲ ❂ ✻)

Data Set Errors Tests Error (%) % Correct Best Published

Office Sounds 3 2448 0.125% 99.875% 99.6% [24]

Freiburg106 6 732 0.82% 99.18% 98.9% [5] (*)

NAR 0 252 0.0% 100.0% 96.0% [26] (**)

MR-HMM (Configuration 2, ❑ ❂ ✸✷, ▲ ❂ ✻) + Auxiliary Features

Office Sounds 5 2448 0.20% 99.80% 99.6% [24]

Freiburg106 5 732 0.68% 99.32% 98.9% [5] (*)

NAR 0 252 0.00% 100% 96.0% [26] (**)

TABLE III. CLASSIFICATION PERFORMANCE USING MR-HMM AND

AUXILIARY FEATURES. (*) F-SCORE. (**) TEN-FOLD

CROSS-VALIDATION.

Fig. 3. Results for combining with auxiliary feature classifier in total number
of errors. Top: MR-HMM configuration 1, Bottom: MR-HMM configuration
2. Shown on the X-axis is the mixing factor, which approaches zero to the
left (MR-HMM only).

synthetic events. When this temporal information was re-
introduced through an auxiliary classifier based on a set of
simple temporal features, a significant improvement in classifi-
cation performance was obtained, achieving over 99% correct
classification in all cases. Obtaining top performance with a
generative model is noteworthy at a time when discriminative
methods are at the forefront. The ability to assess and repair
the weakness in the MR-HMM classifier, was possible because
it is a generative classifier. such as deep networks. As future
work, it is planned to investigate way that the MR-HMM can
complenent discriminative networks.
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