Bibliography

1
V. Vapnik, The Nature of Statistical Learning.
Springer, 1999.

2
G. E. Hinton, S. Osindero, and Y.-W. Teh, ``A fast learning algorithm for deep belief nets,'' in Neural Computation 2006, 2006.

3
P. M. Baggenstoss, ``A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces.,'' IEEE Trans. Speech and Audio, pp. 411-416, May 2001.

4
P. M. Baggenstoss, ``A theoretically optimum approach to classification using class-specific features.,'' Proceedings of ICPR, Barcelona, 2000.

5
P. M. Baggenstoss, ``Maximum entropy pdf design using feature density constraints: Applications in signal processing,'' IEEE Trans. Signal Processing (accepted for publication on March 23, 2015)), 2015.

6
P. M. Baggenstoss, ``The PDF projection theorem and the class-specific method,'' IEEE Trans Signal Processing, pp. 672-685, March 2003.

7
N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis, ``Non-manifold level sets: A multivalued implicit surface representation with applications to self-collision processing,'' ACM Transactions on Graphics, vol. 36, pp. 1-9, Oct. 2015.

8
J. M. Lee, Introduction to Smooth Manifolds.
Springer, 2002.

9
P. M. Baggenstoss, ``Class-specific features in classification.,'' IEEE Trans Signal Processing, pp. 3428-3432, December 1999.

10
S. Kay, ``Sufficiency, classification, and the class-specific feature theorem,'' IEEE Trans. Information Theory, vol. 46, pp. 1654-1658, July 2000.

11
T. Minka, P. Torr, and A. Zisserman, ``Extending pictorial structures for object recognition,'' BMVC 2004, September 2004.

12
T. Beierholm and P. M. Baggenstoss, ``Speech music discrimination using class-specific features,'' in Proc. ICPR 2004, 2004.

13
S. ichi Amari, ``Integration of stochastic models by minimizing α-divergence,'' Neural Computation, vol. 19, p. 2780–2796, 2007.

14
B. Tang, H. He, P. Baggenstoss, and S. Kay, ``A bayesian classification approach using class-specific features for text categorization,'' IEEE Transactions on Transactions on Knowledge and Data Engineering (accepted), 2016.

15
H. W. Sorensen, Parameter Estimation, Principles ans Problems.
New York: Marcel Dekker, 1980.

16
S. M. Kay, A. H. Nuttall, and P. M. Baggenstoss, ``Multidimensional probability density function approximation for detection, classification and model order selection,'' IEEE Trans. Signal Processing, pp. 2240-2252, Oct 2001.

17
D. R. Cox and D. V. Hinkley, Theoretical Statistics.
London: Chapman and Hall, 1974.

18
R. L. Strawderman, ``Higher-order asymptotic approximation: Laplace, saddlepoint, and related methods,'' Journal of the American Statistical Association, vol. 95, pp. 1358-1364, December 2000.

19
J. Durbin, ``Approximations for densities of sufficient estimators,'' Biometrika, vol. 67, no. 2, pp. 311-333, 1980.

20
P. M. Baggenstoss, ``Optimal detection and classification of diverse short-duration signals,'' in Proceedings of the International Conference on Clould Engineering, (Boston, MA), pp. 534-539, 2014.

21
P. M. Baggenstoss, ``Uniform manifold sampling (UMS): Sampling the maximum entropy pdf,'' IEEE Transactions on Signal Processing, Jan. 2017.

22
J. W. Picone, ``Signal modeling techniques in speech recognition,'' Proceedings of the IEEE, vol. 81, no. 9, pp. 1215-1247, 1993.

23
L. Devroye, Non-Uniform Random Variate Generation.
Springer, 1986.

24
S. Kay, Fundamentals of Statisticsl Signal Processing, Estimation Theory.
Prentice Hall, Upper Saddle River, New Jersey, USA, 1993.

25
S. Kay, Modern Spectral Estimation: Theory and Applications.
Prentice Hall, 1988.

26
P. Mermelstein, ``Distance measures for speech recognition, psychological and instrumental,'' Pattern Recognition and Artificial Intelligence, p. 374–388, 1976.

27
S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. A. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland, The HTK Book, Version 3.4.
Cambridge University Engineering Department, 2006.

28
S. Geman and D. Geman, ``Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 6, p. 721­741, 1984.

29
S. Kiatsupaibul, R. Smith, and Z. Zabinsky, ``An analysis of a variation of hit-and-run for uniform sampling from general regions,'' ACM Transactions on Modeling and Computer Simulation (TOMACS), vol. 21, no. 3, 2011.

30
R. L. Smith, ``Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions,'' Operations Research, vol. 32, pp. 1296-1308, 1984.

31
R. L. Smith, ``The hit-and-run sampler: a globally reaching Markov chain sampler for generating arbitrary multivariate distributions,'' Proceedings of the 1996 Winter Simulation Conference, 1996.

32
R. M. Neal, ``Slice sampling,'' The Annals of Statistics, vol. 31, no. 3, pp. 705-767, 2003.

33
J. N. Kapur, Maximum Entropy Models in Science and Engineering.
Wiley (Eastern), 1993.

34
N. A. Malik, ``One and two dimensional maximum entropy spectral estimation,'' MIT PhD Thesis, Nov 1981.

35
J. P. Burg, ``The relationship between maximum entropy and maximum likelihood spectra,'' Geophysics, vol. 37, no. 2, pp. 375-376, 1971.

36
S. J. Wernecke and L. R. D'Addario, ``Maximum entropy image reconstruction,'' IEEE Trans. Computers, vol. C-26, no. 4, pp. 351-364, 1977.

37
G. Wei and H. Zhen-Ya, ``A new algorithm for maximum entropy image reconstruction,'' in Proceedings of ICASSP-87, vol. 12, pp. 595-597, April 1987.

38
B. D. Ripley, Stochastic Simulation.
John Wiley & Sons, 1987.

39
B. Milner and X. Shao, ``Speech reconstruction from mel-frequency cepstral coefficients using a source-filter model.,'' in INTERSPEECH, Citeseer, 2002.

40
V. P. Singh, Entropy, Theory and its Applications in Environmental and Water Engineering.
John Wiley & Sons, 2013.

41
K. Conrad, ``Probability distributions and maximum entropy,'' Unpublished article, 2013.

42
A. H. Nuttall and P. M. Baggenstoss, ``The joint distributions for two useful classes of statistics with applications to classification and hypothesis testing,'' NUWC Report, DTIC document number ADA477219, 2002.

43
A. H. Nuttall, ``Joint probability density function of selected order statistics and the sum of the remaining random variables,'' NUWC Technical Report 11345, October 2001.

44
A. H. Nuttall, ``Joint probability density function of selected order statistics and the sum of the remainder as applied to arbitrary independent random variables,'' NUWC Technical Report 11469, November 2003.

45
A. H. Nuttall, ``Saddlepoint approximation for the combined probability and joint probability density function of selected order statistics and the sum of the remainder,'' NUWC Technical Report 11XXX, February 2004.

46
A. H. Nuttall, ``Detection performance of generalized likelihood ratio processors for random signals of unknown location, structure, extent, and strength,'' NUWC Technical Report 10739, August 1994.

47
O. E. Barndorff-Nielsen and D. R. Cox, Asymptotic Techniques for Use in Statistics.
Chapman and Hall, 1989.

48
A. H. Nuttall, ``Saddlepoint approximation and first-order correction term to the joint probability density function of M quadratic and linear forms in K Gaussian random variables with arbitrary means and covariances,'' NUWC Technical Report 11262, December 2000.

49
P. M. Baggenstoss, ``On the equivalence of hanning-weighted and overlapped analysis windows using different window sizes,'' IEEE Signal Processing Letters, vol. 19, pp. 27-30, Jan 2012.

50
P. Baggenstoss, ``Time-series segmentation,'' United States Patent 6907367, June 2005.

51
E. Parzen, ``On estimation of a probability density function and mode,'' Annals of Mathematical Statistics, vol. 33, pp. 1065-1076, 1962.

52
D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis Of Finite Mixture Distributions.
John Wiley & Sons, 1985.

53
R. A. Redner and H. F. Walker, ``Mixture densities maximum likelihood, and the EM algorithm,'' SIAM Review, vol. 26, April 1984.

54
N. Vlassis and A. Likas, ``The kurtosis-EM algorithm for Gaussian mixture modelling,'' IEEE Trans. SMC (submitted), 1999.

55
Anderson and Moore, Optimal Filtering.
PH, 1979.

56
M. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 2.
London: Charles Griffin, 1979.

57
L. R. Rabiner, ``A tutorial on hidden Markov models and selected applications in speech recognition,'' Proceedings of the IEEE, vol. 77, pp. 257-286, February 1989.

58
B. H. Juang, ``Maximum likelihood estimation for mixture multivariate stochastic observations of Markov chains,'' AT&T Technical Journal, vol. 64, no. 6, pp. 1235-1249, 1985.

59
T. Amr, ``Survey on time-series data classification,'' in Submitted to: Time Series and Data Mining 2012 (unpublished), 2012.

60
E. Keogh, ``UCR time series classification/clustering page,'' 2015.

61
C. A. Ratanamahatana and E. Keogh, ``Making time-series classification more accurate using learned constraints,'' in SIAM International Conference on Data Mining (SDM2004), pp. 11-22, 2004.

62
Y.-S. Yun and Y.-H. Oh, ``A segmental-feature hmm for continuous speech recognition based on a parametric trajectory model,'' Speech Communication, vol. 38, pp. 115-130, September 2002.

63
P. M. Baggenstoss, ``Class-specific features in classification.,'' in IASTED International Conference on Signal and Image Processing, 1998.

64
P. M. Baggenstoss, ``A multi-resolution hidden markov model using class-specific features,'' Proceedings of EUSIPCO 2008, Lausanne, Switzerland, Aug 2008.

65
P. M. Baggenstoss, ``A multi-resolution hidden markov model using class-specific features,'' IEEE Transactions on Signal Processing, vol. 58, pp. 5165-5177, Oct 2010.

66
B. F. Harrison and P. M. Baggenstoss, ``A multi-resolution hidden markov model for optimal detection, tracking, separation and classification of marine mammal vocalizations,'' in Proc. Oceans 2008, Quebec City, September 2008.

67
M. Ostendorf, V. Digalakis, and O. A. Kimball, ``From hmms to segment models: A unifed view of stochastic modeling for speech recognition,'' IEEE Transactions on Speech and Audio Processing, 1996.

68
J. A. Bilmes, ``Graphical models and automatic speech recognition,'' Mathematical Foundations of Speech and Language Processing, 2003.

69
P. M. Baggenstoss, ``The class-specific classifier: Avoiding the curse of dimensionality (tutorial),'' IEEE Aerospace and Electronic Systems Magazine, special Tutorial addendum, vol. 19, pp. 37-52, January 2004.

70
S. Furui, ``Speaker-independent isolated word recognition using dynamic features of speech spectrum,'' IEEE Trans on ASSP, vol. 34, no. 1, pp. 52-59, 1986.

71
K. Achan, S. Roweis, and B. Frey, ``A segmental hmm for speech waveforms,'' University of Toronto Technical Report, Jan 2004.

72
D. Gamerman, Markov Chain Monte Carlo.
Chapman and Hall, 1997.

73
J. S. Garofolo, ``Timit acoustic-phonetic continuous speech corpus,'' Linguistic Data Consortium, 1993.

74
P. Baggenstoss, ``Office sounds database,'' http://class-specific.com/os.

75
H. L. Royden, Real Analysis.
Englewood Cliffs, New Jersey, USA: Prentice Hall, third ed., 1988.

76
T. Minka, ``Exemplar-based likelihoods using the pdf projection theorem.,'' Microsoft Research Ltd, technical report, March 2004.

77
D. J. Olive, ``Applied robust statistics,'' Unpublished online text, Chapter 4, http://lagrange.math.siu.edu/Olive/ol-bookp.htm, 2008.

78
D. J. Olive, Robust Multivariate Analysis (to appear).
New York: Springer, 2017.


Baggenstoss 2017-05-19